Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

29.07.2019 | Original Article | Ausgabe 3/2020

International Journal of Machine Learning and Cybernetics 3/2020

Clustering data with the presence of attribute noise: a study of noise completely at random and ensemble of multiple k-means clusterings

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 3/2020
Autor:
Natthakan Iam-On
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In general practice, the perception of noise has been inevitably negative. Specific to data analytic, most of the existing techniques developed thus far comply with a noise-free assumption. Without an assistance of data pre-processing, it is hard for those models to discover reliable patterns. This is also true for k-means, one of the most well known algorithms for cluster analysis. Based on several works in the literature, they suggest that the ensemble approach can deliver accurate results from multiple clusterings of data with noise completely at random. Provided this motivation, the paper presents the study of using different consensus clustering techniques to analyze noisy data, with k-means being exploited as base clusterings. The empirical investigation reveals that the ensemble approach can be robust to low level of noise, while some exhibit improvement over the noise-free cases. This finding is in line with the recent published work that underlines the benefit of small noise to centroid-based clustering methods. In addition, the outcome of this research provides a guideline to analyzing a new data collection of uncertain quality level.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2020

International Journal of Machine Learning and Cybernetics 3/2020 Zur Ausgabe