Skip to main content
Erschienen in:

07.10.2024

CM3-VSL: Cooperative Multi-goal Multi-stage Multi-agent VSL Traffic Control

verfasst von: Asmae Rhanizar, Zineb El Akkaoui

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Variable speed limit (VSL) Systems play a crucial role in proactively optimizing traffic control. As a matter of fact, many countries have deployed VSL Systems to improve road safety and resolve traffic breakdown. Most of smart VSL strategies are deployed to optimize traffic flow within a single road segment only, while real-world scenarios often involve complex bottleneck situations arising from multiple ramps. In response, we introduce a novel Cooperative Multi-goal Multi-stage Multi-agent VSL (CM3-VSL) framework where a diverse set of VSL agents collaboratively work towards both individualized local goals and shared global objectives, addressing the complexities of real-world traffic scenarios. The VSL agents are trained using micro-simulations on a real-world Moroccan highway network. Employing a cooperative strategy, each VSL agent pursues both individual and collective goals. Evaluation against a baseline no-VSL scenario and a single-agent multi-objective Reinforcement Learning VSL demonstrates that CM3-VSL achieves superior performance, contributing to advancements in intelligent traffic control systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
9.
Zurück zum Zitat Hirankitti, V., Krohkaew, J., Hogger, C.: A multi-agent approach for intelligent traffic-light control (2007) Hirankitti, V., Krohkaew, J., Hogger, C.: A multi-agent approach for intelligent traffic-light control (2007)
13.
Zurück zum Zitat Buşoniu, L., Babuška, R., De Schutter, B.: Multi-agent reinforcement learning: An Overview. In: Kacprzyk, J., Srinivasan, D., Jain, L.C. (eds.) Innovations in Multi-Agent Systems and Applications - 1 vol. 310, pp. 183–221. Springer, Berlin, Heidelberg (2010) Buşoniu, L., Babuška, R., De Schutter, B.: Multi-agent reinforcement learning: An Overview. In: Kacprzyk, J., Srinivasan, D., Jain, L.C. (eds.) Innovations in Multi-Agent Systems and Applications - 1 vol. 310, pp. 183–221. Springer, Berlin, Heidelberg (2010)
16.
Zurück zum Zitat OroojlooyJadid, A., Hajinezhad, D.: A review of cooperative multi-agent deep reinforcement learning. arXiv (2021) OroojlooyJadid, A., Hajinezhad, D.: A review of cooperative multi-agent deep reinforcement learning. arXiv (2021)
17.
Zurück zum Zitat Sharma, P.K., Zaroukian, E.G., Fernandez, R., Basak, A., Asher, D.E.: Survey of recent multi-agent reinforcement learning algorithms utilizing centralized training. In: Pham, T., Solomon, L., Hohil, M.E. (eds.) Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III, p. 84. SPIE, Online Only, United States (2021). https://doi.org/10.1117/12.2585808 Sharma, P.K., Zaroukian, E.G., Fernandez, R., Basak, A., Asher, D.E.: Survey of recent multi-agent reinforcement learning algorithms utilizing centralized training. In: Pham, T., Solomon, L., Hohil, M.E. (eds.) Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III, p. 84. SPIE, Online Only, United States (2021). https://​doi.​org/​10.​1117/​12.​2585808
22.
Zurück zum Zitat Zhang, Y., Quinones-Grueiro, M., Zhang, Z., Wang, Y., Barbour, W., Biswas, G., Work, D.: MARVEL: Multi-agent reinforcement-learning for large-scale variable speed limits. arXiv (2023) Zhang, Y., Quinones-Grueiro, M., Zhang, Z., Wang, Y., Barbour, W., Biswas, G., Work, D.: MARVEL: Multi-agent reinforcement-learning for large-scale variable speed limits. arXiv (2023)
23.
Zurück zum Zitat Yang, J., Nakhaei, A., Isele, D., Fujimura, K., Zha, H.: CM3: Cooperative multi-goal multi-stage multi-agent reinforcement learning. arXiv (2020) Yang, J., Nakhaei, A., Isele, D., Fujimura, K., Zha, H.: CM3: Cooperative multi-goal multi-stage multi-agent reinforcement learning. arXiv (2020)
25.
Zurück zum Zitat Mushtaq, A., Haq, I.U., Sarwar, M.A., Khan, A., Khalil, W., Mughal, M.A.: Multi-agent reinforcement learning for traffic flow management of autonomous vehicles. Sensors 23(5), 2373 (2023). https://doi.org/10.3390/s23052373. Accessed 29 Sept 2023 Mushtaq, A., Haq, I.U., Sarwar, M.A., Khan, A., Khalil, W., Mughal, M.A.: Multi-agent reinforcement learning for traffic flow management of autonomous vehicles. Sensors 23(5), 2373 (2023). https://​doi.​org/​10.​3390/​s23052373. Accessed 29 Sept 2023
28.
Zurück zum Zitat Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. arXiv (2020) Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. arXiv (2020)
32.
Zurück zum Zitat Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. arXiv (2017) Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. arXiv (2017)
40.
Zurück zum Zitat Calvo, J.A., Dusparic, I.: Heterogeneous multi-agent deep reinforcement learning for traffic lights control (2018) Calvo, J.A., Dusparic, I.: Heterogeneous multi-agent deep reinforcement learning for traffic lights control (2018)
43.
Zurück zum Zitat Asmae, R., Zineb, E.A.: Multi-objective deep reinforcement learning for variable speed limit control. In: Computing Machinery, A. (ed.) ICMLC ’24: Proceedings of the 2024 16th International Conference on Machine Learning and Computing, New York (2024). https://doi.org/10.1145/3651671.3651719 Asmae, R., Zineb, E.A.: Multi-objective deep reinforcement learning for variable speed limit control. In: Computing Machinery, A. (ed.) ICMLC ’24: Proceedings of the 2024 16th International Conference on Machine Learning and Computing, New York (2024). https://​doi.​org/​10.​1145/​3651671.​3651719
Metadaten
Titel
CM3-VSL: Cooperative Multi-goal Multi-stage Multi-agent VSL Traffic Control
verfasst von
Asmae Rhanizar
Zineb El Akkaoui
Publikationsdatum
07.10.2024
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 3/2024
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-024-00426-z

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.