Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2016

01.03.2016 | Original Article

Co-firing carbon dioxide-torrefied woody biomass with coal on emission characteristics

verfasst von: Siva Sankar Thanapal, Kalyan Annamalai, Robert James Ansley, Devesh Ranjan

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Torrefaction is a pre-treatment technique that involves the partial pyrolysis (200–300 °C) of biomass in an inert environment to improve its fuel properties. Effect of co-firing CO2-torrefied mesquite and juniper (10 % on mass basis) with coal in a 30-kWt downfired burner was studied considering the grindability potential of CO2-torrefied biomass (60 % higher grindability than N2-torrefied biomass). It was observed that co-firing 10 % by mass of raw mesquite with coal reduced the NO x emission from 420 to 280 ppm (33 % reduction) for an equivalence ratio (ER) of 0.9. However, co-firing TB with coal reduced the NO x emission by 10 % when compared to base case NO x emission from combustion of pure powder river basin coal (PRB) coal. Carbon monoxide percentage in the flue gas increased when biomass was co-fired with coal. An inverse relation was observed between CO and NO x emissions due to NO x reducing potential of CO in the presence of fixed carbon. Combining the advantages of using a greenhouse gas CO2 for pre-treatment and potential of CO2-torrefied biomass in reducing emissions with improved grindability, proves co-firing torrefied biomass with coal is an efficient technique.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat IEA (2013) CO2 emissions from fuel combustion. International Energy Agency, France IEA (2013) CO2 emissions from fuel combustion. International Energy Agency, France
4.
Zurück zum Zitat Hus PJ, Tillman DA (2000) Cofiring multiple opportunity fuels with coal at bailly generating station. Biomass Bioenergy 19(6):385–394CrossRef Hus PJ, Tillman DA (2000) Cofiring multiple opportunity fuels with coal at bailly generating station. Biomass Bioenergy 19(6):385–394CrossRef
5.
Zurück zum Zitat Turn SQ, Jenkins BM, Jakeway LA, Blevins LG, Williams RB, Rubenstein G, Kinoshita CM (2006) Test results from sugar cane bagasse and high fiber cane co-fired with fossil fuels. Biomass Bioenergy 30(6):565–574CrossRef Turn SQ, Jenkins BM, Jakeway LA, Blevins LG, Williams RB, Rubenstein G, Kinoshita CM (2006) Test results from sugar cane bagasse and high fiber cane co-fired with fossil fuels. Biomass Bioenergy 30(6):565–574CrossRef
6.
Zurück zum Zitat Damstedt B, Pederson JM, Hansen D, Knighton T, Jones J, Christensen C, Baxter L, Tree D (2007) Biomass cofiring impacts on flame structure and emissions. Proc Combust Inst 31(2):2813–2820CrossRef Damstedt B, Pederson JM, Hansen D, Knighton T, Jones J, Christensen C, Baxter L, Tree D (2007) Biomass cofiring impacts on flame structure and emissions. Proc Combust Inst 31(2):2813–2820CrossRef
7.
Zurück zum Zitat Lawrence B, Annamalai K, Sweeten JM, Heflin K (2009) Cofiring coal and dairy biomass in a 29 kWt furnace. Appl Energy 86(11):2359–2372CrossRef Lawrence B, Annamalai K, Sweeten JM, Heflin K (2009) Cofiring coal and dairy biomass in a 29 kWt furnace. Appl Energy 86(11):2359–2372CrossRef
8.
Zurück zum Zitat Arumugam S, Thien B, Annamalai K, Sweeten J (2005) Feedlot biomass co-firing: a renewable energy alternative for coal-fired utilities. Int J Green Energy 2(4):409–419CrossRef Arumugam S, Thien B, Annamalai K, Sweeten J (2005) Feedlot biomass co-firing: a renewable energy alternative for coal-fired utilities. Int J Green Energy 2(4):409–419CrossRef
9.
Zurück zum Zitat Gogebakan Z, Selçuk N (2008) Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor. Energy Fuel 22(3):1620–1627CrossRef Gogebakan Z, Selçuk N (2008) Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor. Energy Fuel 22(3):1620–1627CrossRef
10.
Zurück zum Zitat Tillman DA (2000) Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy 19(6):365–384CrossRef Tillman DA (2000) Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy 19(6):365–384CrossRef
11.
Zurück zum Zitat Sami M, Annamalai K, Wooldridge M (2001) Co-firing of coal and biomass fuel blends. Prog Energy Combust Sci 27(2):171–214CrossRef Sami M, Annamalai K, Wooldridge M (2001) Co-firing of coal and biomass fuel blends. Prog Energy Combust Sci 27(2):171–214CrossRef
12.
Zurück zum Zitat Narayanan KV, Natarajan E (2007) Experimental studies on cofiring of coal and biomass blends in India. Renew Energy 32(15):2548–2558CrossRef Narayanan KV, Natarajan E (2007) Experimental studies on cofiring of coal and biomass blends in India. Renew Energy 32(15):2548–2558CrossRef
13.
Zurück zum Zitat Jin Y, Lu L, Ma X, Liu H, Chi Y, Yoshikawa K (2013) Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor. Appl Energy 102:563–570CrossRef Jin Y, Lu L, Ma X, Liu H, Chi Y, Yoshikawa K (2013) Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor. Appl Energy 102:563–570CrossRef
14.
Zurück zum Zitat Savolainen K (2003) Co-firing of biomass in coal-fired utility boilers. Appl Energy 74(3):369–381CrossRef Savolainen K (2003) Co-firing of biomass in coal-fired utility boilers. Appl Energy 74(3):369–381CrossRef
15.
Zurück zum Zitat Daood SS, Javed MT, Gibbs BM, Nimmo W (2013) NO x control in coal combustion by combining biomass co-firing, oxygen enrichment and SNCR. Fuel 105:283–292CrossRef Daood SS, Javed MT, Gibbs BM, Nimmo W (2013) NO x control in coal combustion by combining biomass co-firing, oxygen enrichment and SNCR. Fuel 105:283–292CrossRef
16.
Zurück zum Zitat Brouwer JOW, Harding S, Heap MP, Pershing DW (1995) Cofiring waste biofuels and coal for emissions reduction. In: 2nd Biomass Conference of the Americas, Portland, pp 390–399 Brouwer JOW, Harding S, Heap MP, Pershing DW (1995) Cofiring waste biofuels and coal for emissions reduction. In: 2nd Biomass Conference of the Americas, Portland, pp 390–399
17.
Zurück zum Zitat Demirbaş A (2003) Sustainable cofiring of biomass with coal. Energy Convers Manag 44(9):1465–1479CrossRef Demirbaş A (2003) Sustainable cofiring of biomass with coal. Energy Convers Manag 44(9):1465–1479CrossRef
18.
Zurück zum Zitat Agar D, Wihersaari M (2012) Bio-coal, torrefied lignocellulosic resources—key properties for its use in co-firing with fossil coal—their status. Biomass Bioenergy 44:107–111CrossRef Agar D, Wihersaari M (2012) Bio-coal, torrefied lignocellulosic resources—key properties for its use in co-firing with fossil coal—their status. Biomass Bioenergy 44:107–111CrossRef
19.
Zurück zum Zitat Tran KQ, Luo X, Seisenbaeva G, Jirjis R (2013) Stump torrefaction for bioenergy application. Appl Energy 112:539–546CrossRef Tran KQ, Luo X, Seisenbaeva G, Jirjis R (2013) Stump torrefaction for bioenergy application. Appl Energy 112:539–546CrossRef
20.
Zurück zum Zitat Eseltine D, Thanapal SS, Annamalai K, Ranjan D (2013) Torrefaction of woody biomass (Juniper and Mesquite) using inert and non-inert gases. Fuel 113:379–388CrossRef Eseltine D, Thanapal SS, Annamalai K, Ranjan D (2013) Torrefaction of woody biomass (Juniper and Mesquite) using inert and non-inert gases. Fuel 113:379–388CrossRef
21.
Zurück zum Zitat Thanapal SS, Chen W, Annamalai K, Carlin N, Ansley RJ, Ranjan D (2014) Carbon dioxide torrefaction of woody biomass. Energy Fuel. doi:10.1021/ef4022625 Thanapal SS, Chen W, Annamalai K, Carlin N, Ansley RJ, Ranjan D (2014) Carbon dioxide torrefaction of woody biomass. Energy Fuel. doi:10.​1021/​ef4022625
22.
Zurück zum Zitat Lu KM, Lee WJ, Chen WH, Lin TC (2013) Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Appl Energy 105:57–65CrossRef Lu KM, Lee WJ, Chen WH, Lin TC (2013) Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Appl Energy 105:57–65CrossRef
23.
Zurück zum Zitat Jones JM, Bridgeman TG, Darvell LI, Gudka B, Saddawi A, Williams A (2012) Combustion properties of torrefied willow compared with bituminous coals. Fuel Process Technol 101:1–9CrossRef Jones JM, Bridgeman TG, Darvell LI, Gudka B, Saddawi A, Williams A (2012) Combustion properties of torrefied willow compared with bituminous coals. Fuel Process Technol 101:1–9CrossRef
24.
Zurück zum Zitat Goldfarb JL, Liu C (2013) Impact of blend ratio on the co-firing of a commercial torrefied biomass and coal via analysis of oxidation kinetics. Bioresour Technol 149:208–215CrossRef Goldfarb JL, Liu C (2013) Impact of blend ratio on the co-firing of a commercial torrefied biomass and coal via analysis of oxidation kinetics. Bioresour Technol 149:208–215CrossRef
25.
Zurück zum Zitat Maciejewska A, Veringa H, Sanders J, Peteves SD (2006) Co-firing of biomass with coal: constraints and role of biomass pre-treatment. Institute for Energy, Petten Maciejewska A, Veringa H, Sanders J, Peteves SD (2006) Co-firing of biomass with coal: constraints and role of biomass pre-treatment. Institute for Energy, Petten
26.
Zurück zum Zitat Li J, Brzdekiewicz A, Yang W, Blasiak W (2012) Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching. Appl Energy 99:344–354CrossRef Li J, Brzdekiewicz A, Yang W, Blasiak W (2012) Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching. Appl Energy 99:344–354CrossRef
27.
Zurück zum Zitat Li J, Biagini E, Yang W, Tognotti L, Blasiak W (2013) Flame characteristics of pulverized torrefied-biomass combusted with high-temperature air. Combust Flame 160(11):2585–2594CrossRef Li J, Biagini E, Yang W, Tognotti L, Blasiak W (2013) Flame characteristics of pulverized torrefied-biomass combusted with high-temperature air. Combust Flame 160(11):2585–2594CrossRef
28.
Zurück zum Zitat Yani S, Gao X, Wu H (2015) Emission of Inorganic PM10 from the combustion of torrefied biomass under pulverized-fuel conditions. Energy Fuel 29:800–807 Yani S, Gao X, Wu H (2015) Emission of Inorganic PM10 from the combustion of torrefied biomass under pulverized-fuel conditions. Energy Fuel 29:800–807
29.
Zurück zum Zitat Van Auken OW (2000) Shrub invasions of North American semiarid grasslands. Annu Rev Ecol Syst 31:197–215CrossRef Van Auken OW (2000) Shrub invasions of North American semiarid grasslands. Annu Rev Ecol Syst 31:197–215CrossRef
30.
Zurück zum Zitat Ansley RJ, Mirik M, Castellano MJ (2010) Structural biomass partitioning in regrowth and undisturbed mesquite (Prosopis glandulosa): implications for bioenergy uses. GCB Bioenergy 2:26–36CrossRef Ansley RJ, Mirik M, Castellano MJ (2010) Structural biomass partitioning in regrowth and undisturbed mesquite (Prosopis glandulosa): implications for bioenergy uses. GCB Bioenergy 2:26–36CrossRef
31.
Zurück zum Zitat Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF (2005) Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci 31(4):283–307CrossRef Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF (2005) Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci 31(4):283–307CrossRef
32.
Zurück zum Zitat Lawn CJ (1987) Principles of combustion engineering for boilers. Academic Press Lawn CJ (1987) Principles of combustion engineering for boilers. Academic Press
33.
Zurück zum Zitat Oh HJ (2008) Reburning renewable biomass for emissions control and ash deposition effects in power generation. Texas A&M University, College Station Oh HJ (2008) Reburning renewable biomass for emissions control and ash deposition effects in power generation. Texas A&M University, College Station
34.
Zurück zum Zitat Annamalai K, Puri IK (2007) Combustion science and engineering, vol 7. CRC Press, Boca Raton Annamalai K, Puri IK (2007) Combustion science and engineering, vol 7. CRC Press, Boca Raton
35.
Zurück zum Zitat Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75(1):3–8 Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75(1):3–8
36.
Zurück zum Zitat Chen W (2012) Fixed bed counter current low temperature gasification of mesquite and juniper biomass using air-steam as oxidizer. Texas A&M University, College Station, Texas Chen W (2012) Fixed bed counter current low temperature gasification of mesquite and juniper biomass using air-steam as oxidizer. Texas A&M University, College Station, Texas
37.
Zurück zum Zitat Thanapal SS (2014) Effect of co-firing torrefied woody biomass with coal in a 30 kWt downfired burner. Texas A&M University, College Station Thanapal SS (2014) Effect of co-firing torrefied woody biomass with coal in a 30 kWt downfired burner. Texas A&M University, College Station
38.
Zurück zum Zitat Annamalai K (2013) Respiratory quotient (Rq), exhaust gas analyses, CO2 emission and applications in automobile engineering. Adv Automob Eng 2, e116CrossRef Annamalai K (2013) Respiratory quotient (Rq), exhaust gas analyses, CO2 emission and applications in automobile engineering. Adv Automob Eng 2, e116CrossRef
39.
Zurück zum Zitat Varol M, Atimtay AT, Olgun H, Atakül H (2014) Emission characteristics of co-combustion of a low calorie and high sulfur–lignite coal and woodchips in a circulating fluidized bed combustor: part 1. Effect of excess air ratio. Fuel 117:792–800CrossRef Varol M, Atimtay AT, Olgun H, Atakül H (2014) Emission characteristics of co-combustion of a low calorie and high sulfur–lignite coal and woodchips in a circulating fluidized bed combustor: part 1. Effect of excess air ratio. Fuel 117:792–800CrossRef
40.
Zurück zum Zitat Glarborg P, Jensen AD, Johnsson JE (2003) Fuel nitrogen conversion in solid fuel fired systems. Prog Energy Combust Sci 29(2):89–113CrossRef Glarborg P, Jensen AD, Johnsson JE (2003) Fuel nitrogen conversion in solid fuel fired systems. Prog Energy Combust Sci 29(2):89–113CrossRef
41.
Zurück zum Zitat Thien BF, Lawrence BD, Sweeten JM, Annamalai K (2012) Co-firing coal: poultry litter biomass blends in a laboratory scale boiler-burner. Trans ASABE 55(2):681–688CrossRef Thien BF, Lawrence BD, Sweeten JM, Annamalai K (2012) Co-firing coal: poultry litter biomass blends in a laboratory scale boiler-burner. Trans ASABE 55(2):681–688CrossRef
42.
Zurück zum Zitat Mitchell JW, Tarbell JM (1982) A kinetic model of nitric oxide formation during pulverized coal combustion. AIChE J 28(2):302–311CrossRef Mitchell JW, Tarbell JM (1982) A kinetic model of nitric oxide formation during pulverized coal combustion. AIChE J 28(2):302–311CrossRef
Metadaten
Titel
Co-firing carbon dioxide-torrefied woody biomass with coal on emission characteristics
verfasst von
Siva Sankar Thanapal
Kalyan Annamalai
Robert James Ansley
Devesh Ranjan
Publikationsdatum
01.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2016
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-015-0166-6

Weitere Artikel der Ausgabe 1/2016

Biomass Conversion and Biorefinery 1/2016 Zur Ausgabe