Skip to main content

2016 | OriginalPaper | Buchkapitel

7. CO2 Adsorption on Unsupported and Graphene Oxide Supported Layered Double Hydroxides in a Fixed-Bed

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter addresses the CO2 adsorption kinetics and equilibria of LDH and LDH/GO hybrids under dry and wet conditions using breakthrough curve responses obtained in a fixed-bed column. A comparative study between temperature-swing and isothermal N2 purge experiments is presented. In addition, a mathematical model based on the linear driving force approximation is used to describe the dry experiment profiles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
First-contact refers to the first exposure to the adsorptive gas after activation.
 
2
The procedure to synthesise the adsorbents and their physicochemical properties are given in Chaps. 5 and 6.
 
3
The optimal estimated value of kLDF was found with the gPROMS in-built parameter estimation facility based on a Maximum Likelihood formulation. The 95 % t-value was ≫ 95 % reference t-value in all cases. In addition, the confidence intervals were ≪ respective estimated parameter value.
 
Literatur
1.
Zurück zum Zitat Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.CrossRef Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.CrossRef
2.
Zurück zum Zitat Ebner, A. D., Reynolds, S. P., & Ritter, J. A. (2006). Understanding the adsorption and desorption behavior of CO2 on a K-promoted hydrotalcite-like compound (HTlc) through nonequilibrium dynamic isotherms. Industrial and Engineering Chemistry Research, 45(18), 6387–6392.CrossRef Ebner, A. D., Reynolds, S. P., & Ritter, J. A. (2006). Understanding the adsorption and desorption behavior of CO2 on a K-promoted hydrotalcite-like compound (HTlc) through nonequilibrium dynamic isotherms. Industrial and Engineering Chemistry Research, 45(18), 6387–6392.CrossRef
3.
Zurück zum Zitat van Selow, E. R., Cobden, P. D., Verbraeken, P. A., Hufton, J. R., & van den Brink, R. W. (2009). Carbon capture by sorption-enhanced water—gas shift reaction process using hydrotalcite-based material. Industrial and Engineering Chemistry Research, 48(9), 4184–4193.CrossRef van Selow, E. R., Cobden, P. D., Verbraeken, P. A., Hufton, J. R., & van den Brink, R. W. (2009). Carbon capture by sorption-enhanced water—gas shift reaction process using hydrotalcite-based material. Industrial and Engineering Chemistry Research, 48(9), 4184–4193.CrossRef
4.
Zurück zum Zitat Halabi, M. H., de Croon, M. H. J. M., van der Schaaf, J., Cobden, P. D., & Schouten, J. C. (2012). High capacity potassium-promoted hydrotalcite for CO2 capture in H2 production. International Journal of Hydrogen Energy, 37(5), 4516–4525.CrossRef Halabi, M. H., de Croon, M. H. J. M., van der Schaaf, J., Cobden, P. D., & Schouten, J. C. (2012). High capacity potassium-promoted hydrotalcite for CO2 capture in H2 production. International Journal of Hydrogen Energy, 37(5), 4516–4525.CrossRef
5.
Zurück zum Zitat Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2007). Chemisorption of carbon dioxide on sodium oxide promoted alumina. AIChE Journal, 53(11), 2824–2831.CrossRef Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2007). Chemisorption of carbon dioxide on sodium oxide promoted alumina. AIChE Journal, 53(11), 2824–2831.CrossRef
6.
Zurück zum Zitat León, M., Díaz, E., Bennici, S., Vega, A., Ordóñez, S., & Auroux, A. (2010). Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility. Industrial and Engineering Chemistry Research, 49(8), 3663–3671.CrossRef León, M., Díaz, E., Bennici, S., Vega, A., Ordóñez, S., & Auroux, A. (2010). Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility. Industrial and Engineering Chemistry Research, 49(8), 3663–3671.CrossRef
7.
Zurück zum Zitat Reddy Ram, M. K., Xu, Z. P., & Diniz da Costa, J. C. (2008). Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Industrial and Engineering Chemistry Research, 47(8), 2630–2635.CrossRef Reddy Ram, M. K., Xu, Z. P., & Diniz da Costa, J. C. (2008). Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Industrial and Engineering Chemistry Research, 47(8), 2630–2635.CrossRef
8.
Zurück zum Zitat Debecker, D. P., Gaigneaux, E. M., & Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry—A European Journal, 15(16), 3920–3935.CrossRef Debecker, D. P., Gaigneaux, E. M., & Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry—A European Journal, 15(16), 3920–3935.CrossRef
9.
Zurück zum Zitat Ding, Y., & Alpay, E. (2000). Adsorption-enhanced steam–methane reforming. Chemical Engineering Science, 55(18), 3929–3940.CrossRef Ding, Y., & Alpay, E. (2000). Adsorption-enhanced steam–methane reforming. Chemical Engineering Science, 55(18), 3929–3940.CrossRef
10.
Zurück zum Zitat Hufton, J. R., Mayorga, S., & Sircar, S. (1999). Sorption-enhanced reaction process for hydrogen production. AIChE Journal, 45(2), 248–256.CrossRef Hufton, J. R., Mayorga, S., & Sircar, S. (1999). Sorption-enhanced reaction process for hydrogen production. AIChE Journal, 45(2), 248–256.CrossRef
11.
Zurück zum Zitat Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.CrossRef Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.CrossRef
12.
Zurück zum Zitat Reijers, H. T. J., Boon, J., Elzinga, G. D., Cobden, P. D., Haije, W. G., & van den Brink, R. W. (2009). Modeling study of the sorption-enhanced reaction process for CO2 capture. I. Model development and validation. Industrial and Engineering Chemistry Research, 48(15), 6966–6974.CrossRef Reijers, H. T. J., Boon, J., Elzinga, G. D., Cobden, P. D., Haije, W. G., & van den Brink, R. W. (2009). Modeling study of the sorption-enhanced reaction process for CO2 capture. I. Model development and validation. Industrial and Engineering Chemistry Research, 48(15), 6966–6974.CrossRef
13.
Zurück zum Zitat Boon, J., Cobden, P. D., van Dijk, H. A. J., Hoogland, C., van Selow, E. R., & van Sint Annaland, M. (2014). Isotherm model for high-temperature, high-pressure adsorption of and on K-promoted hydrotalcite. Chemical Engineering Journal, 248, 406–414.CrossRef Boon, J., Cobden, P. D., van Dijk, H. A. J., Hoogland, C., van Selow, E. R., & van Sint Annaland, M. (2014). Isotherm model for high-temperature, high-pressure adsorption of and on K-promoted hydrotalcite. Chemical Engineering Journal, 248, 406–414.CrossRef
14.
Zurück zum Zitat Levenspiel, O., & Bischoff, K. B. (1964). Patterns of flow in chemical process vessels. In B. Thomas, J. W. H. Drew & V. Theodore (Eds.), Advances in chemical engineering (Vol. 4, pp. 95–198). New York: Academic Press. Levenspiel, O., & Bischoff, K. B. (1964). Patterns of flow in chemical process vessels. In B. Thomas, J. W. H. Drew & V. Theodore (Eds.), Advances in chemical engineering (Vol. 4, pp. 95–198). New York: Academic Press.
15.
Zurück zum Zitat Yang, R. T. (1997). Gas separation by adsorption processes. London, UK: Imperial College Press (Vol. 1). Yang, R. T. (1997). Gas separation by adsorption processes. London, UK: Imperial College Press (Vol. 1).
16.
Zurück zum Zitat Kapteijn, F., & Moulijn, J. A. (2008). Laboratory catalytic reactors: Aspects of catalyst testing. In Handbook of heterogeneous catalysis. Germany: Wiley-VCH Verlag GmbH & Co. KGaA. Kapteijn, F., & Moulijn, J. A. (2008). Laboratory catalytic reactors: Aspects of catalyst testing. In Handbook of heterogeneous catalysis. Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
17.
Zurück zum Zitat Dixon, A. G. (1988). Correlations for wall and particle shape effects on fixed bed bulk voidage. The Canadian Journal of Chemical Engineering, 66(5), 705–708.CrossRef Dixon, A. G. (1988). Correlations for wall and particle shape effects on fixed bed bulk voidage. The Canadian Journal of Chemical Engineering, 66(5), 705–708.CrossRef
18.
Zurück zum Zitat Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). A new method for prediction of binary gas-phase diffusion coefficients. Industrial and Engineering Chemistry, 58(5), 18–27.CrossRef Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). A new method for prediction of binary gas-phase diffusion coefficients. Industrial and Engineering Chemistry, 58(5), 18–27.CrossRef
19.
Zurück zum Zitat Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2004). The properties of Gases and Liquids. New York, USA: McGraw-Hill. Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2004). The properties of Gases and Liquids. New York, USA: McGraw-Hill.
20.
Zurück zum Zitat Edwards, M. F., & Richardson, J. F. (1968). Gas dispersion in packed beds. Chemical Engineering Science, 23(2), 109–123.CrossRef Edwards, M. F., & Richardson, J. F. (1968). Gas dispersion in packed beds. Chemical Engineering Science, 23(2), 109–123.CrossRef
21.
Zurück zum Zitat Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. NY, USA: Wiley. Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. NY, USA: Wiley.
22.
Zurück zum Zitat Dantas, T. L. P., Rodrigues, A. E., & Moreira, R. F. P. M. (2012). Separation of carbon dioxide from flue gas using adsorption on porous solids. Greenhouse Gases—Capturing, Utilization and Reduction. Dantas, T. L. P., Rodrigues, A. E., & Moreira, R. F. P. M. (2012). Separation of carbon dioxide from flue gas using adsorption on porous solids. Greenhouse Gases—Capturing, Utilization and Reduction.
23.
Zurück zum Zitat Reijers, H. T. J., Boon, J., Elzinga, G. D., Cobden, P. D., Haije, W. G., & Brink, R Wvd. (2009). Modeling study of the sorption-enhanced reaction process for CO2 capture. II. Application to steam-methane reforming. Industrial and Engineering Chemistry Research, 48(15), 6975–6982.CrossRef Reijers, H. T. J., Boon, J., Elzinga, G. D., Cobden, P. D., Haije, W. G., & Brink, R Wvd. (2009). Modeling study of the sorption-enhanced reaction process for CO2 capture. II. Application to steam-methane reforming. Industrial and Engineering Chemistry Research, 48(15), 6975–6982.CrossRef
24.
Zurück zum Zitat Rezaei, F., & Webley, P. (2010). Structured adsorbents in gas separation processes. Separation and Purification Technology, 70(3), 243–256.CrossRef Rezaei, F., & Webley, P. (2010). Structured adsorbents in gas separation processes. Separation and Purification Technology, 70(3), 243–256.CrossRef
Metadaten
Titel
CO2 Adsorption on Unsupported and Graphene Oxide Supported Layered Double Hydroxides in a Fixed-Bed
verfasst von
Diana Iruretagoyena Ferrer
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-41276-4_7