2016 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
This chapter addresses the CO2 adsorption kinetics and equilibria of LDH and LDH/GO hybrids under dry and wet conditions using breakthrough curve responses obtained in a fixed-bed column. A comparative study between temperature-swing and isothermal N2 purge experiments is presented. In addition, a mathematical model based on the linear driving force approximation is used to describe the dry experiment profiles.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO
2 adsorption on hydrotalcite adsorbent.
Chemical Engineering Science,
55(17), 3461–3474.
CrossRef
2.
Ebner, A. D., Reynolds, S. P., & Ritter, J. A. (2006). Understanding the adsorption and desorption behavior of CO
2 on a K-promoted hydrotalcite-like compound (HTlc) through nonequilibrium dynamic isotherms.
Industrial and Engineering Chemistry Research,
45(18), 6387–6392.
CrossRef
3.
van Selow, E. R., Cobden, P. D., Verbraeken, P. A., Hufton, J. R., & van den Brink, R. W. (2009). Carbon capture by sorption-enhanced water—gas shift reaction process using hydrotalcite-based material.
Industrial and Engineering Chemistry Research,
48(9), 4184–4193.
CrossRef
4.
Halabi, M. H., de Croon, M. H. J. M., van der Schaaf, J., Cobden, P. D., & Schouten, J. C. (2012). High capacity potassium-promoted hydrotalcite for CO
2 capture in H
2 production.
International Journal of Hydrogen Energy,
37(5), 4516–4525.
CrossRef
5.
Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2007). Chemisorption of carbon dioxide on sodium oxide promoted alumina.
AIChE Journal,
53(11), 2824–2831.
CrossRef
6.
León, M., Díaz, E., Bennici, S., Vega, A., Ordóñez, S., & Auroux, A. (2010). Adsorption of CO
2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility.
Industrial and Engineering Chemistry Research,
49(8), 3663–3671.
CrossRef
7.
Reddy Ram, M. K., Xu, Z. P., & Diniz da Costa, J. C. (2008). Influence of water on high-temperature CO
2 capture using layered double hydroxide derivatives.
Industrial and Engineering Chemistry Research,
47(8), 2630–2635.
CrossRef
8.
Debecker, D. P., Gaigneaux, E. M., & Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis.
Chemistry—A European Journal,
15(16), 3920–3935.
CrossRef
9.
Ding, Y., & Alpay, E. (2000). Adsorption-enhanced steam–methane reforming.
Chemical Engineering Science,
55(18), 3929–3940.
CrossRef
10.
Hufton, J. R., Mayorga, S., & Sircar, S. (1999). Sorption-enhanced reaction process for hydrogen production.
AIChE Journal,
45(2), 248–256.
CrossRef
11.
Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO
2 capture.
Industrial and Engineering Chemistry Research,
49(3), 1229–1235.
CrossRef
12.
Reijers, H. T. J., Boon, J., Elzinga, G. D., Cobden, P. D., Haije, W. G., & van den Brink, R. W. (2009). Modeling study of the sorption-enhanced reaction process for CO
2 capture. I. Model development and validation.
Industrial and Engineering Chemistry Research,
48(15), 6966–6974.
CrossRef
13.
Boon, J., Cobden, P. D., van Dijk, H. A. J., Hoogland, C., van Selow, E. R., & van Sint Annaland, M. (2014). Isotherm model for high-temperature, high-pressure adsorption of and on K-promoted hydrotalcite.
Chemical Engineering Journal,
248, 406–414.
CrossRef
14.
Levenspiel, O., & Bischoff, K. B. (1964). Patterns of flow in chemical process vessels. In B. Thomas, J. W. H. Drew & V. Theodore (Eds.),
Advances in chemical engineering (Vol. 4, pp. 95–198). New York: Academic Press.
15.
Yang, R. T. (1997).
Gas separation by adsorption processes. London, UK: Imperial College Press (Vol. 1).
16.
Kapteijn, F., & Moulijn, J. A. (2008). Laboratory catalytic reactors: Aspects of catalyst testing. In
Handbook of heterogeneous catalysis. Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
17.
Dixon, A. G. (1988). Correlations for wall and particle shape effects on fixed bed bulk voidage.
The Canadian Journal of Chemical Engineering,
66(5), 705–708.
CrossRef
18.
Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). A new method for prediction of binary gas-phase diffusion coefficients.
Industrial and Engineering Chemistry,
58(5), 18–27.
CrossRef
19.
Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2004).
The properties of Gases and Liquids. New York, USA: McGraw-Hill.
20.
Edwards, M. F., & Richardson, J. F. (1968). Gas dispersion in packed beds.
Chemical Engineering Science,
23(2), 109–123.
CrossRef
21.
Ruthven, D. M. (1984).
Principles of adsorption and adsorption processes. NY, USA: Wiley.
22.
Dantas, T. L. P., Rodrigues, A. E., & Moreira, R. F. P. M. (2012). Separation of carbon dioxide from flue gas using adsorption on porous solids.
Greenhouse Gases—Capturing, Utilization and Reduction.
23.
Reijers, H. T. J., Boon, J., Elzinga, G. D., Cobden, P. D., Haije, W. G., & Brink, R Wvd. (2009). Modeling study of the sorption-enhanced reaction process for CO
2 capture. II. Application to steam-methane reforming.
Industrial and Engineering Chemistry Research,
48(15), 6975–6982.
CrossRef
24.
Rezaei, F., & Webley, P. (2010). Structured adsorbents in gas separation processes.
Separation and Purification Technology,
70(3), 243–256.
CrossRef
- Titel
- CO2 Adsorption on Unsupported and Graphene Oxide Supported Layered Double Hydroxides in a Fixed-Bed
- DOI
- https://doi.org/10.1007/978-3-319-41276-4_7
- Autor:
-
Diana Iruretagoyena Ferrer
- Sequenznummer
- 7
- Kapitelnummer
- Chapter 7