Skip to main content

2012 | OriginalPaper | Buchkapitel

4. CO2 Capture with PEG

verfasst von : Zhen-Zhen Yang, Qing-Wen Song, Liang-Nian He

Erschienen in: Capture and Utilization of Carbon Dioxide with Polyethylene Glycol

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The capture of CO2 from fossil fuel combustion, e.g., coal-fired power plants, represents a critical component of efforts aimed at stabilizing greenhouse gas levels in the atmosphere. In addition, removal of CO2 from natural gas is of vital importance to maintain and expand the availability of these clean-burning, efficient fuel sources. In recent years, worldwide efforts have been devoted to developing various technologies/processes for CCS, including adopting liquids, solids, and membranes as adsorbents. Interest in PEGs stems from its distinctive properties, such as inexpensive, thermally stable, almost negligible vapor pressure, toxicologically innocuous, and environmentally benign characterization. The functionalized-PEGs have been developed for both physical and chemical capture of CO2, including PEGs (Sect. 4.1), PEG-modified solid absorbents (Sect. 4.2), PEG-functionalized gas-separation membranes (Sect. 4.3) and PEG-functionalized liquid absorbents (Sect. 4.4). Indeed, PEG could increase the solubility of CO2 in the absorbent through chemical interactions, which is detected by in situ FT-IR under pressure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35):6058–6082CrossRef D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35):6058–6082CrossRef
2.
Zurück zum Zitat McCann N, Maeder M, Attalla M (2008) Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems. Ind Eng Chem Res 47(6):2002–2009CrossRef McCann N, Maeder M, Attalla M (2008) Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems. Ind Eng Chem Res 47(6):2002–2009CrossRef
3.
Zurück zum Zitat Bates ED, Mayton RD, Ntai I et al (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124(6):926–927CrossRef Bates ED, Mayton RD, Ntai I et al (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124(6):926–927CrossRef
4.
Zurück zum Zitat Wang C, Luo H, Jiang De et al (2010) Carbon dioxide capture by superbase-derived protic ionic liquids. Angew Chem Int Ed 49(34):5978–5981 Wang C, Luo H, Jiang De et al (2010) Carbon dioxide capture by superbase-derived protic ionic liquids. Angew Chem Int Ed 49(34):5978–5981
5.
Zurück zum Zitat Wang C, Luo X, Luo H et al (2011) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chem Int Ed 50(21):4918–4922CrossRef Wang C, Luo X, Luo H et al (2011) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chem Int Ed 50(21):4918–4922CrossRef
6.
Zurück zum Zitat Li X, Hou M, Zhang Z et al (2008) Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chem 10(8):879–884CrossRef Li X, Hou M, Zhang Z et al (2008) Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chem 10(8):879–884CrossRef
7.
Zurück zum Zitat Ochiai B, Yokota K, Fujii A et al (2008) Reversible trap—release of CO2 by polymers bearing DBU and DBN moieties. Macromolecules 41(4):1229–1236CrossRef Ochiai B, Yokota K, Fujii A et al (2008) Reversible trap—release of CO2 by polymers bearing DBU and DBN moieties. Macromolecules 41(4):1229–1236CrossRef
8.
Zurück zum Zitat MacDowell N, Florin N, Buchard A et al (2010) An overview of CO2 capture technologies. Energy Environ Sci 3(11):1645–1669CrossRef MacDowell N, Florin N, Buchard A et al (2010) An overview of CO2 capture technologies. Energy Environ Sci 3(11):1645–1669CrossRef
9.
Zurück zum Zitat Goeppert A, Meth S, Prakash GKS et al (2010) Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energ Environ Sci 3(12):1949–1960CrossRef Goeppert A, Meth S, Prakash GKS et al (2010) Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energ Environ Sci 3(12):1949–1960CrossRef
10.
Zurück zum Zitat Aschenbrenner O, Styring P (2010) Comparative study of solvent properties for carbon dioxide absorption. Energ Environ Sci 3(8):1106–1113CrossRef Aschenbrenner O, Styring P (2010) Comparative study of solvent properties for carbon dioxide absorption. Energ Environ Sci 3(8):1106–1113CrossRef
11.
Zurück zum Zitat Wang Q, Luo J, Zhong Z et al (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energ Environ Sci 4(1):42–55CrossRef Wang Q, Luo J, Zhong Z et al (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energ Environ Sci 4(1):42–55CrossRef
12.
Zurück zum Zitat Gurkan BE, de la Fuente JC, Mindrup EM et al (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132(7):2116–2117CrossRef Gurkan BE, de la Fuente JC, Mindrup EM et al (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132(7):2116–2117CrossRef
13.
Zurück zum Zitat Rochelle GT (2009) Amine Scrubbing for CO2 Capture. Science 325(5948):1652–1654CrossRef Rochelle GT (2009) Amine Scrubbing for CO2 Capture. Science 325(5948):1652–1654CrossRef
14.
Zurück zum Zitat Haszeldine RS (2009) Carbon capture and storage: How green can black be? Science 325(5948):1647–1652CrossRef Haszeldine RS (2009) Carbon capture and storage: How green can black be? Science 325(5948):1647–1652CrossRef
15.
Zurück zum Zitat Yong Z, Mata V, Rodrigues ArE (2002) Adsorption of carbon dioxide at high temperature—a review. Sep Purif Technol 26(2–3):195–205CrossRef Yong Z, Mata V, Rodrigues ArE (2002) Adsorption of carbon dioxide at high temperature—a review. Sep Purif Technol 26(2–3):195–205CrossRef
16.
Zurück zum Zitat Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9):796–854CrossRef Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9):796–854CrossRef
17.
Zurück zum Zitat Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40(1–3):321–348CrossRef Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40(1–3):321–348CrossRef
18.
Zurück zum Zitat Suh MP, Cheon YE, Lee EY (2008) Syntheses and functions of porous metallosupramolecular networks. Coord Chem Rev 252(8–9):1007–1026CrossRef Suh MP, Cheon YE, Lee EY (2008) Syntheses and functions of porous metallosupramolecular networks. Coord Chem Rev 252(8–9):1007–1026CrossRef
19.
Zurück zum Zitat Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38(5):1477–1504CrossRef Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38(5):1477–1504CrossRef
20.
Zurück zum Zitat Morris RE, Wheatley PS (2008) Gas storage in nanoporous materials. Angew Chem Int Ed 47(27):4966–4981CrossRef Morris RE, Wheatley PS (2008) Gas storage in nanoporous materials. Angew Chem Int Ed 47(27):4966–4981CrossRef
21.
Zurück zum Zitat Ebner AD, Ritter JA (2009) State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep Sci Technol 44(6):1273–1421CrossRef Ebner AD, Ritter JA (2009) State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep Sci Technol 44(6):1273–1421CrossRef
22.
Zurück zum Zitat Yu KMK, Curcic I, Gabriel J et al (2008) Recent advances in CO2 capture and utilization. ChemSusChem 1(11):893–899CrossRef Yu KMK, Curcic I, Gabriel J et al (2008) Recent advances in CO2 capture and utilization. ChemSusChem 1(11):893–899CrossRef
23.
Zurück zum Zitat Radosz M, Hu X, Krutkramelis K et al (2008) Flue-gas carbon capture on carbonaceous sorbents: toward a low-cost multifunctional carbon filter for “green” energy producers. Ind Eng Chem Res 47(10):3783–3794CrossRef Radosz M, Hu X, Krutkramelis K et al (2008) Flue-gas carbon capture on carbonaceous sorbents: toward a low-cost multifunctional carbon filter for “green” energy producers. Ind Eng Chem Res 47(10):3783–3794CrossRef
24.
Zurück zum Zitat Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663CrossRef Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663CrossRef
26.
Zurück zum Zitat Olah GA, Prakash GKS, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133(33):12881–12898CrossRef Olah GA, Prakash GKS, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133(33):12881–12898CrossRef
27.
Zurück zum Zitat Yang Z-Z, Zhao Y-N, He L-N (2011) CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv 1(4):545–567CrossRef Yang Z-Z, Zhao Y-N, He L-N (2011) CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv 1(4):545–567CrossRef
28.
Zurück zum Zitat Aionicesei E, Škerget M, Knez Ž (2008) Measurement and modeling of the CO2 solubility in poly(ethylene glycol) of different molecular weights. J Chem Eng Data 53(1):185–188CrossRef Aionicesei E, Škerget M, Knez Ž (2008) Measurement and modeling of the CO2 solubility in poly(ethylene glycol) of different molecular weights. J Chem Eng Data 53(1):185–188CrossRef
29.
Zurück zum Zitat Wiesmet V, Weidner E, Behme S et al (2000) Measurement and modelling of high-pressure phase equilibria in the systems polyethyleneglycol (PEG)–propane, PEG–nitrogen and PEG–carbon dioxide. J Supercrit Fluids 17(1):1–12CrossRef Wiesmet V, Weidner E, Behme S et al (2000) Measurement and modelling of high-pressure phase equilibria in the systems polyethyleneglycol (PEG)–propane, PEG–nitrogen and PEG–carbon dioxide. J Supercrit Fluids 17(1):1–12CrossRef
30.
Zurück zum Zitat Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31(1):19–43CrossRef Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31(1):19–43CrossRef
31.
Zurück zum Zitat Weidner E, Wiesmet V, Knez Ž et al (1997) Phase equilibrium (solid-liquid-gas) in polyethyleneglycol-carbon dioxide systems. J Supercrit Fluids 10(3):139–147CrossRef Weidner E, Wiesmet V, Knez Ž et al (1997) Phase equilibrium (solid-liquid-gas) in polyethyleneglycol-carbon dioxide systems. J Supercrit Fluids 10(3):139–147CrossRef
32.
Zurück zum Zitat Li J, Ye Y, Chen L et al (2011) Solubilities of CO2 in poly(ethylene glycols) from (303.15 to 333.15) K. J Chem Eng Data 57(2):610–616CrossRef Li J, Ye Y, Chen L et al (2011) Solubilities of CO2 in poly(ethylene glycols) from (303.15 to 333.15) K. J Chem Eng Data 57(2):610–616CrossRef
33.
Zurück zum Zitat Sayari A, Belmabkhout Y (2010) Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J Am Chem Soc 132(18):6312–6314CrossRef Sayari A, Belmabkhout Y (2010) Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J Am Chem Soc 132(18):6312–6314CrossRef
34.
Zurück zum Zitat Xu X, Song C, Miller BG et al (2005) Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on Polyethylenimine-modified molecular sieve MCM-41. Ind Eng Chem Res 44(21):8113–8119CrossRef Xu X, Song C, Miller BG et al (2005) Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on Polyethylenimine-modified molecular sieve MCM-41. Ind Eng Chem Res 44(21):8113–8119CrossRef
35.
Zurück zum Zitat Gray ML, Hoffman JS, Hreha DC et al (2009) Parametric study of solid amine sorbents for the capture of carbon dioxide. Energ Fuel 23(10):4840–4844CrossRef Gray ML, Hoffman JS, Hreha DC et al (2009) Parametric study of solid amine sorbents for the capture of carbon dioxide. Energ Fuel 23(10):4840–4844CrossRef
36.
Zurück zum Zitat Lee SC, Chae HJ, Lee SJ et al (2008) Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environ Sci Technol 42(8):2736–2741CrossRef Lee SC, Chae HJ, Lee SJ et al (2008) Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environ Sci Technol 42(8):2736–2741CrossRef
37.
Zurück zum Zitat Lee S, Choi B, Ryu C et al (2006) The effect of water on the activation and the CO2 capture capacities of alkali metal-based sorbents. Korean J Chem Eng 23(3):374–379CrossRef Lee S, Choi B, Ryu C et al (2006) The effect of water on the activation and the CO2 capture capacities of alkali metal-based sorbents. Korean J Chem Eng 23(3):374–379CrossRef
38.
Zurück zum Zitat Su F, Lu C, Kuo S-C et al (2010) Adsorption of CO2 on amine-functionalized Y-yype zeolites. Energ Fuel 24(2):1441–1448CrossRef Su F, Lu C, Kuo S-C et al (2010) Adsorption of CO2 on amine-functionalized Y-yype zeolites. Energ Fuel 24(2):1441–1448CrossRef
39.
Zurück zum Zitat Yue MB, Chun Y, Cao Y et al (2006) CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv Funct Mater 16(13):1717–1722CrossRef Yue MB, Chun Y, Cao Y et al (2006) CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv Funct Mater 16(13):1717–1722CrossRef
40.
Zurück zum Zitat Tanthana J, Chuang SSC (2010) In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO2 capture. ChemSusChem 3(8):957–964CrossRef Tanthana J, Chuang SSC (2010) In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO2 capture. ChemSusChem 3(8):957–964CrossRef
41.
42.
Zurück zum Zitat Ogden JM (2002) Hydrogen: the fuel of the future? Phys Today 55(4):69–75CrossRef Ogden JM (2002) Hydrogen: the fuel of the future? Phys Today 55(4):69–75CrossRef
43.
Zurück zum Zitat Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967CrossRef Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967CrossRef
44.
Zurück zum Zitat Stern SA (1994) Polymers for gas separations: the next decade. J Membr Sci 94(1):1–65CrossRef Stern SA (1994) Polymers for gas separations: the next decade. J Membr Sci 94(1):1–65CrossRef
45.
Zurück zum Zitat Yeh JT, Pennline HW, Resnik KP (2001) Study of CO2 absorption and desorption in a packed column. Energ Fuel 15(2):274–278CrossRef Yeh JT, Pennline HW, Resnik KP (2001) Study of CO2 absorption and desorption in a packed column. Energ Fuel 15(2):274–278CrossRef
46.
Zurück zum Zitat Tavolaro A, Drioli E (1999) Zeolite membranes. Adv Mater 11(12):975–996CrossRef Tavolaro A, Drioli E (1999) Zeolite membranes. Adv Mater 11(12):975–996CrossRef
47.
Zurück zum Zitat Lin H, Freeman BD (2005) Materials selection guidelines for membranes that remove CO2 from gas mixtures. J Mol Struct 739(1–3):57–74CrossRef Lin H, Freeman BD (2005) Materials selection guidelines for membranes that remove CO2 from gas mixtures. J Mol Struct 739(1–3):57–74CrossRef
48.
Zurück zum Zitat Kim JH, Ha SY, Nam SY et al (2001) Selective permeation of CO2 through pore-filled polyacrylonitrile membrane with poly(ethylene glycol). J Membr Sci 186(1):97–107CrossRef Kim JH, Ha SY, Nam SY et al (2001) Selective permeation of CO2 through pore-filled polyacrylonitrile membrane with poly(ethylene glycol). J Membr Sci 186(1):97–107CrossRef
49.
Zurück zum Zitat Bondar VI, Freeman BD, Pinnau I (2000) Gas transport properties of poly(ether-b-amide) segmented block copolymers. J Polym Sci Part B: Polym Phys 38(15):2051–2062CrossRef Bondar VI, Freeman BD, Pinnau I (2000) Gas transport properties of poly(ether-b-amide) segmented block copolymers. J Polym Sci Part B: Polym Phys 38(15):2051–2062CrossRef
50.
Zurück zum Zitat Bondar VI, Freeman BD, Pinnau I (1999) Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers. J Polym Sci Part B: Polym Phys 37(17):2463–2475CrossRef Bondar VI, Freeman BD, Pinnau I (1999) Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers. J Polym Sci Part B: Polym Phys 37(17):2463–2475CrossRef
51.
Zurück zum Zitat K-i Okamoto, Fuji M, Okamyo S et al (1995) Gas permeation properties of poly(ether imide) segmented copolymers. Macromolecules 28(20):6950–6956CrossRef K-i Okamoto, Fuji M, Okamyo S et al (1995) Gas permeation properties of poly(ether imide) segmented copolymers. Macromolecules 28(20):6950–6956CrossRef
52.
Zurück zum Zitat Garzón B, Lago S, Vega C et al (1994) Computer simulation of vapor–liquid equilibria of linear quadrupolar fluids. Departures from the principle of corresponding states. J Chem Phys 101(5):4166–4176CrossRef Garzón B, Lago S, Vega C et al (1994) Computer simulation of vapor–liquid equilibria of linear quadrupolar fluids. Departures from the principle of corresponding states. J Chem Phys 101(5):4166–4176CrossRef
53.
Zurück zum Zitat Patel NP, Hunt MA, Lin-Gibson S et al (2005) Tunable CO2 transport through mixed polyether membranes. J Membr Sci 251(1–2):51–57CrossRef Patel NP, Hunt MA, Lin-Gibson S et al (2005) Tunable CO2 transport through mixed polyether membranes. J Membr Sci 251(1–2):51–57CrossRef
54.
Zurück zum Zitat Yoshino M, Ito K, Kita H et al (2000) Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethylene oxide)-segmented copolymers. J Polym Sci Part B: Polym Phys 38(13):1707–1715CrossRef Yoshino M, Ito K, Kita H et al (2000) Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethylene oxide)-segmented copolymers. J Polym Sci Part B: Polym Phys 38(13):1707–1715CrossRef
55.
Zurück zum Zitat Kim JH, Ha SY, Lee YM (2001) Gas permeation of poly(amide-6-b-ethylene oxide) copolymer. J Membr Sci 190(2):179–193CrossRef Kim JH, Ha SY, Lee YM (2001) Gas permeation of poly(amide-6-b-ethylene oxide) copolymer. J Membr Sci 190(2):179–193CrossRef
56.
Zurück zum Zitat Car A, Stropnik C, Yave W et al (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307(1):88–95CrossRef Car A, Stropnik C, Yave W et al (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307(1):88–95CrossRef
57.
Zurück zum Zitat Cong H, Yu B (2010) Aminosilane cross-linked PEG/PEPEG/PPEPG membranes for CO2/N2 and CO2/H2 separation. Ind Eng Chem Res 49(19):9363–9369CrossRef Cong H, Yu B (2010) Aminosilane cross-linked PEG/PEPEG/PPEPG membranes for CO2/N2 and CO2/H2 separation. Ind Eng Chem Res 49(19):9363–9369CrossRef
58.
Zurück zum Zitat Dharman MM, Choi H-J, Kim D-W et al (2011) Synthesis of cyclic carbonate through microwave irradiation using silica-supported ionic liquids: Effect of variation in the silica support. Catal Today 164(1):544–547CrossRef Dharman MM, Choi H-J, Kim D-W et al (2011) Synthesis of cyclic carbonate through microwave irradiation using silica-supported ionic liquids: Effect of variation in the silica support. Catal Today 164(1):544–547CrossRef
59.
Zurück zum Zitat Zhang S, Chen Y, Li F et al (2006) Fixation and conversion of CO2 using ionic liquids. Catal Today 115(1–4):61–69CrossRef Zhang S, Chen Y, Li F et al (2006) Fixation and conversion of CO2 using ionic liquids. Catal Today 115(1–4):61–69CrossRef
60.
Zurück zum Zitat Pérez-Salado Kamps Á, Tuma D, Xia J et al (2003) Solubility of CO2 in the Ionic Liquid [bmim][PF6]. J Chem Eng Data 48(3):746–749CrossRef Pérez-Salado Kamps Á, Tuma D, Xia J et al (2003) Solubility of CO2 in the Ionic Liquid [bmim][PF6]. J Chem Eng Data 48(3):746–749CrossRef
61.
Zurück zum Zitat Shiflett MB, Yokozeki A (2007) Solubility of CO2 in room temperature ionic liquid [hmim][Tf2 N]. J Phys Chem B 111(8):2070–2074CrossRef Shiflett MB, Yokozeki A (2007) Solubility of CO2 in room temperature ionic liquid [hmim][Tf2 N]. J Phys Chem B 111(8):2070–2074CrossRef
62.
Zurück zum Zitat Raeissi S, Peters CJ (2008) Carbon dioxide solubility in the homologous 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Family. J Chem Eng Data 54(2):382–386CrossRef Raeissi S, Peters CJ (2008) Carbon dioxide solubility in the homologous 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Family. J Chem Eng Data 54(2):382–386CrossRef
63.
Zurück zum Zitat Davis Jr JH (2004) Task-specific ionic liquids. Chem Lett 33(9):1072–1077 Davis Jr JH (2004) Task-specific ionic liquids. Chem Lett 33(9):1072–1077
64.
Zurück zum Zitat Yu G, Zhang S, Yao X et al (2006) Design of task-specific ionic liquids for capturing CO2: a molecular orbital study. Ind Eng Chem Res 45(8):2875–2880CrossRef Yu G, Zhang S, Yao X et al (2006) Design of task-specific ionic liquids for capturing CO2: a molecular orbital study. Ind Eng Chem Res 45(8):2875–2880CrossRef
65.
Zurück zum Zitat Camper D, Bara J, Koval C et al (2006) Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids. Ind Eng Chem Res 45(18):6279–6283CrossRef Camper D, Bara J, Koval C et al (2006) Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids. Ind Eng Chem Res 45(18):6279–6283CrossRef
66.
Zurück zum Zitat Camper D, Scovazzo P, Koval C et al (2004) Gas solubilities in room-temperature ionic liquids. Ind Eng Chem Res 43(12):3049–3054CrossRef Camper D, Scovazzo P, Koval C et al (2004) Gas solubilities in room-temperature ionic liquids. Ind Eng Chem Res 43(12):3049–3054CrossRef
67.
Zurück zum Zitat Cadena C, Anthony JL, Shah JK et al (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126(16):5300–5308CrossRef Cadena C, Anthony JL, Shah JK et al (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126(16):5300–5308CrossRef
68.
Zurück zum Zitat Anthony JL, Anderson JL, Maginn EJ et al (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109(13):6366–6374CrossRef Anthony JL, Anderson JL, Maginn EJ et al (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109(13):6366–6374CrossRef
69.
Zurück zum Zitat Baltus RE, Culbertson BH, Dai S et al (2004) Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance. J Phys Chem B 108(2):721–727CrossRef Baltus RE, Culbertson BH, Dai S et al (2004) Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance. J Phys Chem B 108(2):721–727CrossRef
70.
Zurück zum Zitat Baltus RE, Counce RM, Culbertson BH et al (2005) Examination of the potential of ionic liquids for gas separations. Separ Sci Technol 40(1):525–541CrossRef Baltus RE, Counce RM, Culbertson BH et al (2005) Examination of the potential of ionic liquids for gas separations. Separ Sci Technol 40(1):525–541CrossRef
71.
Zurück zum Zitat Scovazzo P, Kieft J, Finan DA et al (2004) Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes. J Membr Sci 238(1–2):57–63CrossRef Scovazzo P, Kieft J, Finan DA et al (2004) Gas separations using non-hexafluorophosphate [PF6] anion supported ionic liquid membranes. J Membr Sci 238(1–2):57–63CrossRef
72.
Zurück zum Zitat Bara JE, Gabriel CJ, Lessmann S et al (2007) Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids. Ind Eng Chem Res 46(16):5380–5386CrossRef Bara JE, Gabriel CJ, Lessmann S et al (2007) Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids. Ind Eng Chem Res 46(16):5380–5386CrossRef
73.
Zurück zum Zitat Zhang J, Zhang S, Dong K et al (2006) Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chem Eur J 12(15):4021–4026CrossRef Zhang J, Zhang S, Dong K et al (2006) Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chem Eur J 12(15):4021–4026CrossRef
74.
Zurück zum Zitat Xie H, Zhang S, Li S (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8(7):630–633CrossRef Xie H, Zhang S, Li S (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8(7):630–633CrossRef
75.
Zurück zum Zitat Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5(4):361–363CrossRef Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5(4):361–363CrossRef
76.
Zurück zum Zitat Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids Part II. Effect of the anion and toxicology. Green Chem 7(1):9–14CrossRef Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids Part II. Effect of the anion and toxicology. Green Chem 7(1):9–14CrossRef
77.
Zurück zum Zitat Pretti C, Chiappe C, Pieraccini D et al (2006) Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem 8(3):238–240CrossRef Pretti C, Chiappe C, Pieraccini D et al (2006) Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem 8(3):238–240CrossRef
78.
Zurück zum Zitat Galán Sánchez LM, Meindersma GW, de Haan AB (2007) Solvent properties of functionalized ionic liquids for CO2 absorption. Chem Eng Res Des 85(1):31–39CrossRef Galán Sánchez LM, Meindersma GW, de Haan AB (2007) Solvent properties of functionalized ionic liquids for CO2 absorption. Chem Eng Res Des 85(1):31–39CrossRef
79.
Zurück zum Zitat Avalos M, Babiano R, Cintas P et al (2006) Greener media in chemical synthesis and processing. Angew Chem Int Ed 45(24):3904–3908CrossRef Avalos M, Babiano R, Cintas P et al (2006) Greener media in chemical synthesis and processing. Angew Chem Int Ed 45(24):3904–3908CrossRef
80.
Zurück zum Zitat Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399CrossRef Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399CrossRef
81.
Zurück zum Zitat G-h Tao, He L, Sun N et al (2005) New generation ionic liquids: cations derived from amino acids. Chem Commun 28:3562–3564 G-h Tao, He L, Sun N et al (2005) New generation ionic liquids: cations derived from amino acids. Chem Commun 28:3562–3564
82.
Zurück zum Zitat Abbott AP, Capper G, Davies DL et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71CrossRef Abbott AP, Capper G, Davies DL et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71CrossRef
83.
Zurück zum Zitat Zhang J, Han B, Zhao Y et al (2011) CO2 capture by hydrocarbon surfactant liquids. Chem Commun 47(3):1033–1035CrossRef Zhang J, Han B, Zhao Y et al (2011) CO2 capture by hydrocarbon surfactant liquids. Chem Commun 47(3):1033–1035CrossRef
84.
Zurück zum Zitat Zhou N, Li Q, Wu J et al (2001) Spectroscopic characterization of solubilized water in reversed micelles and microemulsions: sodium bis(2-ethylhexyl) sulfosuccinate and sodium bis(2-ethylhexyl) phosphate in n-heptane. Langmuir 17(15):4505–4509CrossRef Zhou N, Li Q, Wu J et al (2001) Spectroscopic characterization of solubilized water in reversed micelles and microemulsions: sodium bis(2-ethylhexyl) sulfosuccinate and sodium bis(2-ethylhexyl) phosphate in n-heptane. Langmuir 17(15):4505–4509CrossRef
85.
Zurück zum Zitat Li N, Zhang S, Li X et al (2009) Effect of polyethylene glycol (PEG-400) on the 1-butyl-3-methylimidazolium tetrafluoroborate-in-cyclohexane ionic liquid microemulsion. Colloid Polym Sci 287(1):103–108CrossRef Li N, Zhang S, Li X et al (2009) Effect of polyethylene glycol (PEG-400) on the 1-butyl-3-methylimidazolium tetrafluoroborate-in-cyclohexane ionic liquid microemulsion. Colloid Polym Sci 287(1):103–108CrossRef
86.
Zurück zum Zitat Kazarian SG, Vincent MF, Bright FV et al (1996) Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 118(7):1729–1736CrossRef Kazarian SG, Vincent MF, Bright FV et al (1996) Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 118(7):1729–1736CrossRef
87.
Zurück zum Zitat Mawson S, Johnston KP, Combes JR et al (1995) Formation of poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions. Macromolecules 28(9):3182–3191CrossRef Mawson S, Johnston KP, Combes JR et al (1995) Formation of poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions. Macromolecules 28(9):3182–3191CrossRef
88.
Zurück zum Zitat Kazarian SG, Briscoe BJ, Welton T (2000) Combining ionic liquids and supercritical fluids: ATR-IR study of CO2 dissolved in two ionic liquids at high pressures. Chem Commun 20:2047–2048CrossRef Kazarian SG, Briscoe BJ, Welton T (2000) Combining ionic liquids and supercritical fluids: ATR-IR study of CO2 dissolved in two ionic liquids at high pressures. Chem Commun 20:2047–2048CrossRef
89.
Zurück zum Zitat Cammarata L, Kazarian SG, Salter PA et al (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3(23):5192–5200CrossRef Cammarata L, Kazarian SG, Salter PA et al (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3(23):5192–5200CrossRef
Metadaten
Titel
CO2 Capture with PEG
verfasst von
Zhen-Zhen Yang
Qing-Wen Song
Liang-Nian He
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-31268-7_4