Skip to main content

2015 | OriginalPaper | Buchkapitel

2. CO2 Sequestration Through Algal Biomass Production

verfasst von : Kanhaiya Kumar, Sanjiv Kumar Mishra, Gang-Guk Choi, Ji-Won Yang

Erschienen in: Algal Biorefinery: An Integrated Approach

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The world is facing the threat of global warming. This is associated with the modernization and increasing dependency of human beings on the fossil fuel. Fossil fuel are necessary for providing the increasing demand on energy. However, their combustion produces greenhouse gases such as carbon dioxide, methane, ozone, NOx, water vapour etc. (Kumar K et al., Bioresour Technol 102(8):4945–4953, 2011). CO2 is also continuously being added into the earth’s atmosphere through several natural sources such as volcanic eruptions, combustion of organic matters, autotrophic and heterotrophic respiration (Kumar K, Das D, Carbon dioxide sequestration by biological processes. In: Bhanage BM, Arai M (eds) Transformation and utilization of carbon dioxide. Springer, Heidelberg, pp 303–334, 2014; Sharma A et al., Enzyme Microb Technol 48:416–426, 2011). However, robust natural mechanisms of CO2 capture could maintain the balance of CO2 in the earth’s atmosphere. Global carbon cycle is disturbed mainly due to anthropogenic emissions of CO2 because of human activity (Kumar K, Das D, Carbon dioxide sequestration by biological processes. In: Bhanage BM, Arai M (eds) Transformation and utilization of carbon dioxide. Springer, Heidelberg, pp 303–334, 2014). Coal is the major contributor of CO2, which is in the range of 14–17 % depending upon its quality. Therefore, coal-based industries such as cement, steel and thermal power plants pollute the earth’s environment to a greater extent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allen, D.E., Strazisar, B.R., Soong, Y. and Hedges, S.W. (2005). Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities. Fuel Process Technol., 86(14), 1569–1580.CrossRef Allen, D.E., Strazisar, B.R., Soong, Y. and Hedges, S.W. (2005). Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities. Fuel Process Technol., 86(14), 1569–1580.CrossRef
Zurück zum Zitat Bachu, S. (2000). Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change. Energy Convers. Mgmt., 41, 953–970.CrossRef Bachu, S. (2000). Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change. Energy Convers. Mgmt., 41, 953–970.CrossRef
Zurück zum Zitat Barbosa, M.J., Janssen, M., Ham, N., Tramper, J. and Wijffels, R.H. (2003). Microalgae cultivation in airlift reactors: Modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol. Bioeng., 82(2), 170–179.CrossRef Barbosa, M.J., Janssen, M., Ham, N., Tramper, J. and Wijffels, R.H. (2003). Microalgae cultivation in airlift reactors: Modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol. Bioeng., 82(2), 170–179.CrossRef
Zurück zum Zitat Bardgett, R.D., Freeman, C. and Ostle, N.J. (2008). Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2, 805–814.CrossRef Bardgett, R.D., Freeman, C. and Ostle, N.J. (2008). Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2, 805–814.CrossRef
Zurück zum Zitat Basu, S., Roy, A.S., Mohanty, K. and Ghoshal, A.K. (2013). Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour. Technol., 143, 369–377. Basu, S., Roy, A.S., Mohanty, K. and Ghoshal, A.K. (2013). Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour. Technol., 143, 369–377.
Zurück zum Zitat Brennan, L. and Owende, P. (2010). Biofuels from microalgae – A review of technologies for production, processing and extractions of biofuels and co-products. Renew. Sustain. Energy Rev., 14, 217–232.CrossRef Brennan, L. and Owende, P. (2010). Biofuels from microalgae – A review of technologies for production, processing and extractions of biofuels and co-products. Renew. Sustain. Energy Rev., 14, 217–232.CrossRef
Zurück zum Zitat Calvin, M. and Benson, A.A. (1948). The path of carbon in photosynthesis. Science, 107, 476–480.CrossRef Calvin, M. and Benson, A.A. (1948). The path of carbon in photosynthesis. Science, 107, 476–480.CrossRef
Zurück zum Zitat Carvalho, A.P., Luis, A., Meireles, A. and Malcata, F.X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnol. Prog., 22, 1490–1506.CrossRef Carvalho, A.P., Luis, A., Meireles, A. and Malcata, F.X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnol. Prog., 22, 1490–1506.CrossRef
Zurück zum Zitat Chiaramonti, D., Prussi, M., Casini, D., Tredici, M.R., Rodolfi, L., Bassi, N., Zittelli, G.C. and Bondioli, P. (2013). Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Appl. Energy, 102, 101–111.CrossRef Chiaramonti, D., Prussi, M., Casini, D., Tredici, M.R., Rodolfi, L., Bassi, N., Zittelli, G.C. and Bondioli, P. (2013). Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Appl. Energy, 102, 101–111.CrossRef
Zurück zum Zitat Chiu, S.Y., Kao, C.Y., Tsai, M.T., Ong, S.C., Chen, C.H. and Lin, C.S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour. Technol., 100(2), 833–838.CrossRef Chiu, S.Y., Kao, C.Y., Tsai, M.T., Ong, S.C., Chen, C.H. and Lin, C.S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour. Technol., 100(2), 833–838.CrossRef
Zurück zum Zitat Cordero, B.F., Obraztsova, I., Couso, I., Leon, R., Vargas, M.A. and Rodrigue, H. (2011). Enhancement of lutein production in Chlorella sorokiniana (Chlorophyta) by improvement of culture conditions and random mutagenesis. Mar. Drugs., 9, 1607–1624.CrossRef Cordero, B.F., Obraztsova, I., Couso, I., Leon, R., Vargas, M.A. and Rodrigue, H. (2011). Enhancement of lutein production in Chlorella sorokiniana (Chlorophyta) by improvement of culture conditions and random mutagenesis. Mar. Drugs., 9, 1607–1624.CrossRef
Zurück zum Zitat Craggs, R., Sutherland, D. and Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol., 24, 329–337.CrossRef Craggs, R., Sutherland, D. and Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol., 24, 329–337.CrossRef
Zurück zum Zitat Dayananda, C., Sarada, R., Kumar, V. and Ravishankar, G.A. (2007). Isolation and characterization of hydrocarbon producing green alga Bortyococcus braunii from Indian freshwater bodies. Electron. J. Biotechnol., 10, 78–91.CrossRef Dayananda, C., Sarada, R., Kumar, V. and Ravishankar, G.A. (2007). Isolation and characterization of hydrocarbon producing green alga Bortyococcus braunii from Indian freshwater bodies. Electron. J. Biotechnol., 10, 78–91.CrossRef
Zurück zum Zitat deGodos, I., Mendoza, J.L., Acién, F.G., Molina, E., Banks, C.J., Heaven, S. and Rogalla, F. (2014). Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour. Technol., 153, 307–314.CrossRef deGodos, I., Mendoza, J.L., Acién, F.G., Molina, E., Banks, C.J., Heaven, S. and Rogalla, F. (2014). Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour. Technol., 153, 307–314.CrossRef
Zurück zum Zitat de Morais, M.G. and Costa, J.A.V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett., 29, 1349–1352.CrossRef de Morais, M.G. and Costa, J.A.V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett., 29, 1349–1352.CrossRef
Zurück zum Zitat Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F.T., Moore III, B., Pedersen,T., Rosenthal, Y., Seitzinger, S., Smetacek, V. and Steffen, W. (2000). The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science, 290, 291–296. Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F.T., Moore III, B., Pedersen,T., Rosenthal, Y., Seitzinger, S., Smetacek, V. and Steffen, W. (2000). The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science, 290, 291–296.
Zurück zum Zitat Fast, A.G. and Papoutsakis, E.T. (2012). Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr. Opin. Chem. Eng., 1, 1–16.CrossRef Fast, A.G. and Papoutsakis, E.T. (2012). Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr. Opin. Chem. Eng., 1, 1–16.CrossRef
Zurück zum Zitat Friis, J.C., Holm, C. and Sorensen, B.H. (1998). Evaluation of elemental composition of algal biomass as toxical endpoint. Chemosphere., 37(13), 2665–2676.CrossRef Friis, J.C., Holm, C. and Sorensen, B.H. (1998). Evaluation of elemental composition of algal biomass as toxical endpoint. Chemosphere., 37(13), 2665–2676.CrossRef
Zurück zum Zitat Geng, L., Zhang, J., Qin, B. and Yang, Z. (2014). No difference in colony formation of Scenedesmus obliquus exposed to lakes with different nutrient levels. Biochem. Sys. Ecol., 57, 178–182.CrossRef Geng, L., Zhang, J., Qin, B. and Yang, Z. (2014). No difference in colony formation of Scenedesmus obliquus exposed to lakes with different nutrient levels. Biochem. Sys. Ecol., 57, 178–182.CrossRef
Zurück zum Zitat Giordano, M., Beardall, J. and Raven, J.A. (2005). Mechanisms in algae: Mechanisms, environmental modulation and evolution. Annu. Rev. Plant Biol., 56, 99–131.CrossRef Giordano, M., Beardall, J. and Raven, J.A. (2005). Mechanisms in algae: Mechanisms, environmental modulation and evolution. Annu. Rev. Plant Biol., 56, 99–131.CrossRef
Zurück zum Zitat Goldman, J. and Brewer, P. (1980). Effect of nitrogen source and growth rate on phytoplankton-mediated changes in alkalinity. Limnol. Oceanogr., 25, 352–357.CrossRef Goldman, J. and Brewer, P. (1980). Effect of nitrogen source and growth rate on phytoplankton-mediated changes in alkalinity. Limnol. Oceanogr., 25, 352–357.CrossRef
Zurück zum Zitat González‐López, C. V., Acién Fernández, F. G., Fernández‐Sevilla, J. M., Sánchez Fernández, J. F., & Molina Grima, E. (2012). Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnology and bioengineering, 109(7), 1637–1650.CrossRef González‐López, C. V., Acién Fernández, F. G., Fernández‐Sevilla, J. M., Sánchez Fernández, J. F., & Molina Grima, E. (2012). Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnology and bioengineering, 109(7), 1637–1650.CrossRef
Zurück zum Zitat Hreiz, R., Sialve, B., Morchain, J., Escudié, R., Steyer, J.-P. and Guiraud, P. (2014). Experimental and numerical investigation of hydrodynamics in raceway reactors used for algaculture. Chem. Eng. J., 250, 230–239.CrossRef Hreiz, R., Sialve, B., Morchain, J., Escudié, R., Steyer, J.-P. and Guiraud, P. (2014). Experimental and numerical investigation of hydrodynamics in raceway reactors used for algaculture. Chem. Eng. J., 250, 230–239.CrossRef
Zurück zum Zitat Hu, Q., Guterman, H. and Richmond, A. (1996). A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioeng., 51, 51–60.CrossRef Hu, Q., Guterman, H. and Richmond, A. (1996). A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioeng., 51, 51–60.CrossRef
Zurück zum Zitat Hulatt, C.J. and Thomas, D.N. (2011). Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresour. Technol., 102, 5775–5787.CrossRef Hulatt, C.J. and Thomas, D.N. (2011). Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresour. Technol., 102, 5775–5787.CrossRef
Zurück zum Zitat Iwasaki, I., Hu, Q., Kurano, N. and Miyachi, S. (1998). Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a ‘high-CO2’ tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. J Photochem. Photobiol. B-Biol., 44(3), 184–190.CrossRef Iwasaki, I., Hu, Q., Kurano, N. and Miyachi, S. (1998). Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a ‘high-CO2’ tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. J Photochem. Photobiol. B-Biol., 44(3), 184–190.CrossRef
Zurück zum Zitat Jacob-Lopes, E., Revah, S., Hernandez, S., Shirai, K. and Franco, T.T. (2009). Development of operational strategies to remove carbon dioxide in photobioreactors. Chem. Eng. J., 153(1–3), 120–126.CrossRef Jacob-Lopes, E., Revah, S., Hernandez, S., Shirai, K. and Franco, T.T. (2009). Development of operational strategies to remove carbon dioxide in photobioreactors. Chem. Eng. J., 153(1–3), 120–126.CrossRef
Zurück zum Zitat Jacob-Lopes, E., Scoparo, C.H.G. and Franco, T.T. (2008). Rates of CO2 removal by Aphanothece microscopic Nageli in tubular photobioreactors. Chem. Eng. Prog., 47, 1365–1373.CrossRef Jacob-Lopes, E., Scoparo, C.H.G. and Franco, T.T. (2008). Rates of CO2 removal by Aphanothece microscopic Nageli in tubular photobioreactors. Chem. Eng. Prog., 47, 1365–1373.CrossRef
Zurück zum Zitat Jorquera, O., Kiperstok, A., Sales, E.A., Embiruçu, M. and Ghirardi, M.L. (2010). Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol., 101, 1406–1413.CrossRef Jorquera, O., Kiperstok, A., Sales, E.A., Embiruçu, M. and Ghirardi, M.L. (2010). Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol., 101, 1406–1413.CrossRef
Zurück zum Zitat Ketheesan, B. and Nirmalakhandan, N. (2012). Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresour. Technol., 108, 196–202.CrossRef Ketheesan, B. and Nirmalakhandan, N. (2012). Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresour. Technol., 108, 196–202.CrossRef
Zurück zum Zitat Kim, C.W., Sung, M-G., Nam, K., Moon, M., Kwon, J-H. and Yang, J-W. (2014). Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresour. Technol., 159, 30–35.CrossRef Kim, C.W., Sung, M-G., Nam, K., Moon, M., Kwon, J-H. and Yang, J-W. (2014). Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresour. Technol., 159, 30–35.CrossRef
Zurück zum Zitat Kumar, K. and Das, D. (2012). Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresour. Technol., 116, 307–313.CrossRef Kumar, K. and Das, D. (2012). Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresour. Technol., 116, 307–313.CrossRef
Zurück zum Zitat Kumar, K. and Das, D. (2013). CO2 sequestration and hydrogen production using cyanobacteria and green algae. In: Razeghifard, R. (ed.), Natural and Artificial Photosynthesis Solar power as an Energy Source. John Wiley and Sons, Inc., pp. 173–215. Kumar, K. and Das, D. (2013). CO2 sequestration and hydrogen production using cyanobacteria and green algae. In: Razeghifard, R. (ed.), Natural and Artificial Photosynthesis Solar power as an Energy Source. John Wiley and Sons, Inc., pp. 173–215.
Zurück zum Zitat Kumar, K. and Das, D. (2014). Carbon Dioxide Sequestration by Biological Processes. In: Bhanage, B.M. and Arai, M. (eds), Transformation and Utilization of Carbon Dioxide. Springer, pp. 303–334. Kumar, K. and Das, D. (2014). Carbon Dioxide Sequestration by Biological Processes. In: Bhanage, B.M. and Arai, M. (eds), Transformation and Utilization of Carbon Dioxide. Springer, pp. 303–334.
Zurück zum Zitat Kumar, K., Dasgupta, C.N. and Das, D. (2014). Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour. Technol., 167, 358–366.CrossRef Kumar, K., Dasgupta, C.N. and Das, D. (2014). Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour. Technol., 167, 358–366.CrossRef
Zurück zum Zitat Kumar, K., Dasgupta, C.N., Nayak, BK., Lindblad, P. and Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol., 102(8), 4945–4953.CrossRef Kumar, K., Dasgupta, C.N., Nayak, BK., Lindblad, P. and Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol., 102(8), 4945–4953.CrossRef
Zurück zum Zitat Kumar, K., Sirasale, A. and Das, D. (2013). Use of image analysis tool for the development of light distribution pattern inside the photobioreactor for the algal cultivation. Bioresour. Technol., 143, 88–95.CrossRef Kumar, K., Sirasale, A. and Das, D. (2013). Use of image analysis tool for the development of light distribution pattern inside the photobioreactor for the algal cultivation. Bioresour. Technol., 143, 88–95.CrossRef
Zurück zum Zitat Kurano, N., Ikemoto, H., Miyashita, H., Hasegawa, T., Hata, H. and Miyachi, S. (1995). Fixation and Utilization of Carbon-Dioxide by Microalgal Photosynthesis. Energy Convers. Mgmt., 36(6–9), 689–692. Kurano, N., Ikemoto, H., Miyashita, H., Hasegawa, T., Hata, H. and Miyachi, S. (1995). Fixation and Utilization of Carbon-Dioxide by Microalgal Photosynthesis. Energy Convers. Mgmt., 36(6–9), 689–692.
Zurück zum Zitat Lee, J.S. and Lee, J.P. (2003). Review of advances in biological CO2 mitigation technology. Biotechnol. Bioprocess Eng, 8, 354–359.CrossRef Lee, J.S. and Lee, J.P. (2003). Review of advances in biological CO2 mitigation technology. Biotechnol. Bioprocess Eng, 8, 354–359.CrossRef
Zurück zum Zitat Lee, Y.K. and Pirt, S.J. (1981). Energetics of photosynthetic algal growth: Influence of intermittent illumination in short (40s) cycles. J. Gen. Microbiol., 24, 43–52. Lee, Y.K. and Pirt, S.J. (1981). Energetics of photosynthetic algal growth: Influence of intermittent illumination in short (40s) cycles. J. Gen. Microbiol., 24, 43–52.
Zurück zum Zitat Li, S., Luo, S. and Guo, R. (2013). Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresour. Technol., 136, 267–272.CrossRef Li, S., Luo, S. and Guo, R. (2013). Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresour. Technol., 136, 267–272.CrossRef
Zurück zum Zitat Li, Y., Horsman, M., Wu, N., Lan, C.Q. and Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnol. Prog., 24, 815–820. Li, Y., Horsman, M., Wu, N., Lan, C.Q. and Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnol. Prog., 24, 815–820.
Zurück zum Zitat Lopez, C.V.G., Fernandez, F.G.A., Sevilla, J.M.F., Fernandez, J.F.S., Garcia, M.C.C. and Grima, E.M. (2009). Utilization of the cyanobacteria Anabaena sp ATCC 33047 in CO2 removal processes. Bioresour. Technol., 100(23), 5904–5910.CrossRef Lopez, C.V.G., Fernandez, F.G.A., Sevilla, J.M.F., Fernandez, J.F.S., Garcia, M.C.C. and Grima, E.M. (2009). Utilization of the cyanobacteria Anabaena sp ATCC 33047 in CO2 removal processes. Bioresour. Technol., 100(23), 5904–5910.CrossRef
Zurück zum Zitat Loubiere, K., Olivo, E., Bougaran, G., Pruvost, J., Robert, R. and Legrand, J. (2009). A new photobioreactor for continuous microalgal production in hatcheries based on external-loop airlift and swirling flow. Biotech. Bioeng., 102(1), 132–147.CrossRef Loubiere, K., Olivo, E., Bougaran, G., Pruvost, J., Robert, R. and Legrand, J. (2009). A new photobioreactor for continuous microalgal production in hatcheries based on external-loop airlift and swirling flow. Biotech. Bioeng., 102(1), 132–147.CrossRef
Zurück zum Zitat Lubian, L.M., Montero, O., Moreno-Garrido, I., Huertas, I.E., Sobrino, C., Gonzalez-del Valle, M. and Pares, G. (2000). Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J. Appl. Phycol., 12(3–5), 249–255.CrossRef Lubian, L.M., Montero, O., Moreno-Garrido, I., Huertas, I.E., Sobrino, C., Gonzalez-del Valle, M. and Pares, G. (2000). Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J. Appl. Phycol., 12(3–5), 249–255.CrossRef
Zurück zum Zitat Mendoza, J.L., Granados, M.R., de Godos, I., Acién, F.G., Molina, E., Banks, C. and Heaven, S. (2013). Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenerg., 54, 267–275.CrossRef Mendoza, J.L., Granados, M.R., de Godos, I., Acién, F.G., Molina, E., Banks, C. and Heaven, S. (2013). Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenerg., 54, 267–275.CrossRef
Zurück zum Zitat Mirjafari, P., Asghari, K. and Mahinpey, N. (2007). Investigating the Application of Enzyme Carbonic Anhydrase for CO2 Sequestration Purposes. Ind. Eng. Chem. Res., 46, 921–926.CrossRef Mirjafari, P., Asghari, K. and Mahinpey, N. (2007). Investigating the Application of Enzyme Carbonic Anhydrase for CO2 Sequestration Purposes. Ind. Eng. Chem. Res., 46, 921–926.CrossRef
Zurück zum Zitat Miyairi, S. (1995). CO2 assimilation in a thermophilic cyanobacterium. Energy Convers. Mgmt., 36(6–9), 763–766. Miyairi, S. (1995). CO2 assimilation in a thermophilic cyanobacterium. Energy Convers. Mgmt., 36(6–9), 763–766.
Zurück zum Zitat Oswald, W.J. and Golueke, C.G. (1960). Biological transformation of solar energy. Adv. Appl. Microbiol., 11, 223–242.CrossRef Oswald, W.J. and Golueke, C.G. (1960). Biological transformation of solar energy. Adv. Appl. Microbiol., 11, 223–242.CrossRef
Zurück zum Zitat Rao, A.R., Ravishankar, G.A. and Sarada, R.(2012). Cultivation of green alga Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production. Bioresour. Technol., 123, 528–533.CrossRef Rao, A.R., Ravishankar, G.A. and Sarada, R.(2012). Cultivation of green alga Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production. Bioresour. Technol., 123, 528–533.CrossRef
Zurück zum Zitat Richardson, J.W., Johnson, M.D. and Outlaw, J.L. (2012). Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Research., 1, 93–100.CrossRef Richardson, J.W., Johnson, M.D. and Outlaw, J.L. (2012). Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Research., 1, 93–100.CrossRef
Zurück zum Zitat Richmond, A. (2004). Principles for attaining maximal microalgal productivity in photobioreactors: An overview. Hydrobiologia., 512, 33–37.CrossRef Richmond, A. (2004). Principles for attaining maximal microalgal productivity in photobioreactors: An overview. Hydrobiologia., 512, 33–37.CrossRef
Zurück zum Zitat Rizzo, A.M., Prussi, M., Bettucci, L., Libelli, I.M. and Chiaramonti, D. (2013). Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Appl. Energy, 102, 24–31.CrossRef Rizzo, A.M., Prussi, M., Bettucci, L., Libelli, I.M. and Chiaramonti, D. (2013). Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Appl. Energy, 102, 24–31.CrossRef
Zurück zum Zitat Scragg, A.H., Illman, A.M., Carden, A. and Shales, S.W. (2002). Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenerg., 23(1), 67–73.CrossRef Scragg, A.H., Illman, A.M., Carden, A. and Shales, S.W. (2002). Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenerg., 23(1), 67–73.CrossRef
Zurück zum Zitat Segovia, M., Haramaty, L., Berges, J.A. and Falkowski, P.G. (2003). Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiol., 132(1), 99–105.CrossRef Segovia, M., Haramaty, L., Berges, J.A. and Falkowski, P.G. (2003). Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiol., 132(1), 99–105.CrossRef
Zurück zum Zitat Sharma, A., Bhattacharya, A. and Shrivastava, A. (2011). Biomimetic CO2 sequestration using purified carbonic anhydrase from indigenous bacterial strains immobilized on biopolymeric materials. Enzyme Microb. Technol., 48, 416–426.CrossRef Sharma, A., Bhattacharya, A. and Shrivastava, A. (2011). Biomimetic CO2 sequestration using purified carbonic anhydrase from indigenous bacterial strains immobilized on biopolymeric materials. Enzyme Microb. Technol., 48, 416–426.CrossRef
Zurück zum Zitat Spalding, M.H. (2008). Microalgal carbon dioxide concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J. Exp. Biol., 59(7), 1463–1473. Spalding, M.H. (2008). Microalgal carbon dioxide concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J. Exp. Biol., 59(7), 1463–1473.
Zurück zum Zitat Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006). Commercial applications of microalgae. J. Biosci. Bioeng., 101(2), 87–96.CrossRef Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006). Commercial applications of microalgae. J. Biosci. Bioeng., 101(2), 87–96.CrossRef
Zurück zum Zitat Sutherland, D.L., Turnbull, M.H. and Craggs, R.J. (2014). Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds. Water Research, 53, 271–281.CrossRef Sutherland, D.L., Turnbull, M.H. and Craggs, R.J. (2014). Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds. Water Research, 53, 271–281.CrossRef
Zurück zum Zitat Sydney, E.B., Sturm, W., de Carvalho, J.C., Soccol, V.T., Larroche, C., Pandey, A. and Soccol, C.R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol., 88(10), 3291–3294. Sydney, E.B., Sturm, W., de Carvalho, J.C., Soccol, V.T., Larroche, C., Pandey, A. and Soccol, C.R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol., 88(10), 3291–3294.
Zurück zum Zitat Sydney, E.B., Novak, A.C., de Carcalho, J.C. and Soccol, C.R. (2014). Respirometric balance and carbon fixation of industrially important algae. In: A. Paney, D.-J. Lee, Y. Chisti and C.R. Soccol (eds.), Biofuels from algae. Elsevier, MA, USA, pp. 67–84. Sydney, E.B., Novak, A.C., de Carcalho, J.C. and Soccol, C.R. (2014). Respirometric balance and carbon fixation of industrially important algae. In: A. Paney, D.-J. Lee, Y. Chisti and C.R. Soccol (eds.), Biofuels from algae. Elsevier, MA, USA, pp. 67–84.
Zurück zum Zitat Wan, M., Zhang, J., Hou, D., Fan, J., Li, Y., Huang, J. and Jun Wang, J. (2014). The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light–dark cyclic cultivation. Bioresour. Technol., 167, 276–283.CrossRef Wan, M., Zhang, J., Hou, D., Fan, J., Li, Y., Huang, J. and Jun Wang, J. (2014). The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light–dark cyclic cultivation. Bioresour. Technol., 167, 276–283.CrossRef
Zurück zum Zitat Wang, B., Li, Y.Q., Wu, N. and Lan, C.Q. (2008). CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol., 79(5), 707–718.CrossRef Wang, B., Li, Y.Q., Wu, N. and Lan, C.Q. (2008). CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol., 79(5), 707–718.CrossRef
Zurück zum Zitat Watanabe, Y. and Hall, D.O. (1996). Photosynthetic production of the filamentous Cyanobacterium Spirulina platensis in a cone-shaped helical tubular photo-bioreactor. Appl. Microbiol. Biotechnol., 44, 693–698. Watanabe, Y. and Hall, D.O. (1996). Photosynthetic production of the filamentous Cyanobacterium Spirulina platensis in a cone-shaped helical tubular photo-bioreactor. Appl. Microbiol. Biotechnol., 44, 693–698.
Zurück zum Zitat Weissman, J.C., Goebel, R.P. and Benemann, J.R. (1988). Photobioreactor design: mixing, carbon utilization and oxygen accumulation. Biotechnol. Bioeng., 31, 336–344.CrossRef Weissman, J.C., Goebel, R.P. and Benemann, J.R. (1988). Photobioreactor design: mixing, carbon utilization and oxygen accumulation. Biotechnol. Bioeng., 31, 336–344.CrossRef
Zurück zum Zitat Whitmarsh, J. and Govindjee (1999). The photosynthetic process. In: Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, K.-D., Govindjee (eds), Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Narosa Publishers, New Delhi and Kluwer Academic, Dordrecht, pp 11–51. Whitmarsh, J. and Govindjee (1999). The photosynthetic process. In: Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, K.-D., Govindjee (eds), Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Narosa Publishers, New Delhi and Kluwer Academic, Dordrecht, pp 11–51.
Zurück zum Zitat Xu, B., Li, P. and Waller, P. (2014). Study of the flow mixing in a novel ARID raceway for algae production. Renew. Energy., 62, 249–257.CrossRef Xu, B., Li, P. and Waller, P. (2014). Study of the flow mixing in a novel ARID raceway for algae production. Renew. Energy., 62, 249–257.CrossRef
Zurück zum Zitat Yamakawa, H. and Itoh, S. (2013). Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought-tolerant moss: Desiccation-induced acceleration of photosystem II fluorescence decay. Biochemistry., 52, 4451–4459.CrossRef Yamakawa, H. and Itoh, S. (2013). Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought-tolerant moss: Desiccation-induced acceleration of photosystem II fluorescence decay. Biochemistry., 52, 4451–4459.CrossRef
Zurück zum Zitat Yang, X., Xiang, W., Zhang, F., Wu, H., He, H. and Fan, J. (2013). Adaptability of oleaginous microalgae Chlorococcum alkaliphilus MC-1 cultivated with flue gas. Sheng Wu Gong Cheng Xue Bao., 29, 370–381. Yang, X., Xiang, W., Zhang, F., Wu, H., He, H. and Fan, J. (2013). Adaptability of oleaginous microalgae Chlorococcum alkaliphilus MC-1 cultivated with flue gas. Sheng Wu Gong Cheng Xue Bao., 29, 370–381.
Zurück zum Zitat Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y. and Oh, H.M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol., 101 Suppl 1, S71–74. Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y. and Oh, H.M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol., 101 Suppl 1, S71–74.
Zurück zum Zitat Yun, Y.S., Lee, S.B., Park, J.M., Lee, C.I. and Yang, J.W. (1997). Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Technol. Biotechnol., 69(4), 451–455. Yun, Y.S., Lee, S.B., Park, J.M., Lee, C.I. and Yang, J.W. (1997). Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Technol. Biotechnol., 69(4), 451–455.
Zurück zum Zitat Zeng, X., Danquah, M.K., Chen, X.D. and Lu, Y. (2011). Microalgae bioengineering: From CO2 fixation to biofuel production. Renew. Sust. Energ Rev., 15, 3252–3260.CrossRef Zeng, X., Danquah, M.K., Chen, X.D. and Lu, Y. (2011). Microalgae bioengineering: From CO2 fixation to biofuel production. Renew. Sust. Energ Rev., 15, 3252–3260.CrossRef
Zurück zum Zitat Zhang, K., Miyachi, S. and Kurano, N. (2001). Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: Effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency. Appl. Microbiol. Biotechnol., 55(4), 428–433.CrossRef Zhang, K., Miyachi, S. and Kurano, N. (2001). Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: Effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency. Appl. Microbiol. Biotechnol., 55(4), 428–433.CrossRef
Metadaten
Titel
CO2 Sequestration Through Algal Biomass Production
verfasst von
Kanhaiya Kumar
Sanjiv Kumar Mishra
Gang-Guk Choi
Ji-Won Yang
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-22813-6_2