Skip to main content
Erschienen in: Journal of Materials Science 15/2019

03.05.2019 | Chemical routes to materials

Cobalt–phosphate-modified Mo:BiVO4 mesoporous photoelectrodes for enhanced photoelectrochemical water splitting

verfasst von: Changhai Liu, Heng Luo, Yu Xu, Wenchang Wang, Qian Liang, Naotoshi Mitsuzaki, Zhidong Chen

Erschienen in: Journal of Materials Science | Ausgabe 15/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bismuth vanadate as photoanode with suitable bandgap and appropriate valence band positions is generally very stable in aqueous solution and cheap, but the photochemical activity is usually limited by poor electron mobility and low oxygen evolution kinetics. Herein, we exhibit that the above-mentioned problems can be solved by introducing a foreign dopant (Mo6+) into the BiVO4 film to create a distributed n+-n heterojunction and combining the BiVO4 photoanode with cobalt–phosphate water oxidation catalyst to improve the oxygen evolution kinetic. We systematically study the relationship between the higher photoelectrochemical performance and Mo-doping and cobalt–phosphate (CoPi) modification by XRD, Raman, SEM, TEM, LSV, EIS, I–t, and Mott–Schottky measurements, and the CoPi-Mo:BiVO4 heterojunction photoanode shows a current density of 3.27 times higher than that of pristine BiVO4 photoanode. Then, we concentrate our attention on a novel perspective for understanding the photoelectrochemical mechanism of interfacial charge transfer with the Mo-doping and CoPi modification on the BiVO4 photoanodes. This work provides new insights into the rational design of novel photoanodes from various improvement strategies with high photoelectrochemical performance and further utilization for environmental practical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nozik AJ (1978) Photoelectrochemistry: applications to solar energy conversion. Annu Rev Phys Chem 29:189–222CrossRef Nozik AJ (1978) Photoelectrochemistry: applications to solar energy conversion. Annu Rev Phys Chem 29:189–222CrossRef
2.
Zurück zum Zitat Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang H, Miller E, Jaramillo TF (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6:1983–2002CrossRef Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang H, Miller E, Jaramillo TF (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6:1983–2002CrossRef
3.
Zurück zum Zitat Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535CrossRef Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535CrossRef
4.
Zurück zum Zitat Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRef Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRef
5.
Zurück zum Zitat Landman A, Dotan H, Shter GE, Wullenkord M, Houaijia A, Maljusch A, Grader GS, Rothschild A (2017) Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nature Mater 16:646–651CrossRef Landman A, Dotan H, Shter GE, Wullenkord M, Houaijia A, Maljusch A, Grader GS, Rothschild A (2017) Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nature Mater 16:646–651CrossRef
6.
Zurück zum Zitat Jiang C, Moniz SJ, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting–materials and challenges. Chem Soc Rev 46:4645–4660CrossRef Jiang C, Moniz SJ, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting–materials and challenges. Chem Soc Rev 46:4645–4660CrossRef
7.
Zurück zum Zitat Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang CZ, Pan ZH, Takata T, Nakabayashi M, Shibata N, Li YB, Sharp ID, Kudo A, Yamada T, Domen K (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nature Mater 15:611–615CrossRef Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang CZ, Pan ZH, Takata T, Nakabayashi M, Shibata N, Li YB, Sharp ID, Kudo A, Yamada T, Domen K (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nature Mater 15:611–615CrossRef
8.
Zurück zum Zitat Qiu YC, Liu W, Chen W, Zhou GM, Hsu PC, Zhang RF, Liang Z, Fan SS, Zhang YG, Cui Y (2016) Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci Adv 2:e1501764CrossRef Qiu YC, Liu W, Chen W, Zhou GM, Hsu PC, Zhang RF, Liang Z, Fan SS, Zhang YG, Cui Y (2016) Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci Adv 2:e1501764CrossRef
9.
Zurück zum Zitat Kim TW, Choi KS (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343:990–994CrossRef Kim TW, Choi KS (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343:990–994CrossRef
10.
Zurück zum Zitat Li Z, Luo W, Zhang M, Fang J, Zou Z (2013) Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 6:347–370CrossRef Li Z, Luo W, Zhang M, Fang J, Zou Z (2013) Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 6:347–370CrossRef
11.
Zurück zum Zitat Cooper JK, Gul S, Toma FM, Chen L, Liu YS, Guo JH, Ager JW, Yano J, Sharp ID (2015) Indirect bandgap and optical properties of monoclinic bismuth vanadate. J Phys Chem C 119:2969–2974CrossRef Cooper JK, Gul S, Toma FM, Chen L, Liu YS, Guo JH, Ager JW, Yano J, Sharp ID (2015) Indirect bandgap and optical properties of monoclinic bismuth vanadate. J Phys Chem C 119:2969–2974CrossRef
12.
Zurück zum Zitat Huang ZF, Pan L, Zou JJ, Zhang X, Wang L (2014) Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale 6:14044–14063CrossRef Huang ZF, Pan L, Zou JJ, Zhang X, Wang L (2014) Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale 6:14044–14063CrossRef
13.
Zurück zum Zitat Kim TW, Ping Y, Galli GA, Choi KS (2015) Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nature Commun 6:8769CrossRef Kim TW, Ping Y, Galli GA, Choi KS (2015) Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nature Commun 6:8769CrossRef
14.
Zurück zum Zitat Xu L, Zhang FT, Chen JH, Fu XZ, Sun R, Wong CP (2018) Amorphous NiFe nanotube arrays bifunctional electrocatalysts for efficient electrochemical overall water splitting. ACS Appl Energy Mater 1:1210–1217CrossRef Xu L, Zhang FT, Chen JH, Fu XZ, Sun R, Wong CP (2018) Amorphous NiFe nanotube arrays bifunctional electrocatalysts for efficient electrochemical overall water splitting. ACS Appl Energy Mater 1:1210–1217CrossRef
15.
Zurück zum Zitat Toma FM, Cooper JK, Kunzelamann V, McDowell MT, Liu J, Larson DM, Borys NJ, Abelyan C, Beeman JW, Yu KM, Yang JH, Chen L, Shaner MR, Spurgeon J, Houle FA, Persson KA, Sharp ID (2016) Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nature Commun 7:12012CrossRef Toma FM, Cooper JK, Kunzelamann V, McDowell MT, Liu J, Larson DM, Borys NJ, Abelyan C, Beeman JW, Yu KM, Yang JH, Chen L, Shaner MR, Spurgeon J, Houle FA, Persson KA, Sharp ID (2016) Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nature Commun 7:12012CrossRef
16.
Zurück zum Zitat Tan G, Zhang L, Ren H, Huang J, Yang W, Xia A (2014) Microwave hydrothermal synthesis of N-doped BiVO4 nanoplates with exposed (040) facets and enhanced visible-light photocatalytic properties. Ceram Int 40:9541–9547CrossRef Tan G, Zhang L, Ren H, Huang J, Yang W, Xia A (2014) Microwave hydrothermal synthesis of N-doped BiVO4 nanoplates with exposed (040) facets and enhanced visible-light photocatalytic properties. Ceram Int 40:9541–9547CrossRef
17.
Zurück zum Zitat Wang M, Zheng H, Liu J, Dong D, Che Y, Yang C (2015) Enhanced visible-light-driven photocatalytic activity of B-doped BiVO4 synthesized using a corn stem template. Mat Sci Semicon Proc 30:307–313CrossRef Wang M, Zheng H, Liu J, Dong D, Che Y, Yang C (2015) Enhanced visible-light-driven photocatalytic activity of B-doped BiVO4 synthesized using a corn stem template. Mat Sci Semicon Proc 30:307–313CrossRef
18.
Zurück zum Zitat Thalluri SM, Hernández S, Bensaid S, Saracco G, Russo N (2016) Green-synthesized W-and Mo-doped BiVO4 oriented along the 0 4 0 facet with enhanced activity for the sun-driven water oxidation. Appl Catal B Environ 180:630–636CrossRef Thalluri SM, Hernández S, Bensaid S, Saracco G, Russo N (2016) Green-synthesized W-and Mo-doped BiVO4 oriented along the 0 4 0 facet with enhanced activity for the sun-driven water oxidation. Appl Catal B Environ 180:630–636CrossRef
19.
Zurück zum Zitat Okoth OK, Yan K, Zhang J (2017) Mo-doped BiVO4 and graphene nanocomposites with enhanced photoelectrochemical performance for aptasensing of streptomycin. Carbon 120:194–202CrossRef Okoth OK, Yan K, Zhang J (2017) Mo-doped BiVO4 and graphene nanocomposites with enhanced photoelectrochemical performance for aptasensing of streptomycin. Carbon 120:194–202CrossRef
20.
Zurück zum Zitat Bu Y, Tian J, Chen Z, Zhang Q, Li W, Tian F, Ao JP (2017) Optimization of the photo-electrochemical performance of Mo-doped BiVO4 photoanode by controlling the metal–oxygen bond state on (020) facet. Adv Mater Interfaces 4:1601235CrossRef Bu Y, Tian J, Chen Z, Zhang Q, Li W, Tian F, Ao JP (2017) Optimization of the photo-electrochemical performance of Mo-doped BiVO4 photoanode by controlling the metal–oxygen bond state on (020) facet. Adv Mater Interfaces 4:1601235CrossRef
21.
Zurück zum Zitat Chakthranont P, Hellstern TP, McEnaney JM, Jaramillo TF (2017) Design and fabrication of a precious metal-free tandem core-shell p + n Si/W-doped BiVO4 photoanode for unassisted water splitting. Adv Energy Mater 7:1701515CrossRef Chakthranont P, Hellstern TP, McEnaney JM, Jaramillo TF (2017) Design and fabrication of a precious metal-free tandem core-shell p + n Si/W-doped BiVO4 photoanode for unassisted water splitting. Adv Energy Mater 7:1701515CrossRef
22.
Zurück zum Zitat Yang L, Xiong Y, Guo W, Guo J, Gao D, Zhang Y, Xiao P (2017) Mo6+ doped BiVO4 with improved charge separation and oxidation kinetics for photoelectrochemical water splitting. Electrochim Acta 256:268–277CrossRef Yang L, Xiong Y, Guo W, Guo J, Gao D, Zhang Y, Xiao P (2017) Mo6+ doped BiVO4 with improved charge separation and oxidation kinetics for photoelectrochemical water splitting. Electrochim Acta 256:268–277CrossRef
23.
Zurück zum Zitat Zhong DK, Gamelin DR (2010) Photoelectrochemical water oxidation by cobalt catalyst (“Co − Pi”)/α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc 132:4202–4207CrossRef Zhong DK, Gamelin DR (2010) Photoelectrochemical water oxidation by cobalt catalyst (“Co − Pi”)/α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc 132:4202–4207CrossRef
24.
Zurück zum Zitat Jiang Z, Liu Y, Jing T, Huang BB, Zhang XY, Qin XY, Dai Y, Whangbo MH (2016) Enhancing the photocatalytic activity of BiVO4 for oxygen evolution by Ce doping: Ce3+ ions as hole traps. J Phys Chem C 120:2058–2063CrossRef Jiang Z, Liu Y, Jing T, Huang BB, Zhang XY, Qin XY, Dai Y, Whangbo MH (2016) Enhancing the photocatalytic activity of BiVO4 for oxygen evolution by Ce doping: Ce3+ ions as hole traps. J Phys Chem C 120:2058–2063CrossRef
25.
Zurück zum Zitat Kim JH, Jang JW, Kang HJ, Magesh G, Kim JY, Kim JH, Lee J, Lee JS (2014) Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting. J Catal 317:126–134CrossRef Kim JH, Jang JW, Kang HJ, Magesh G, Kim JY, Kim JH, Lee J, Lee JS (2014) Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting. J Catal 317:126–134CrossRef
26.
Zurück zum Zitat Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2 +. Science 321:1072–1075CrossRef Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2 +. Science 321:1072–1075CrossRef
27.
Zurück zum Zitat Tang FM, Cheng WR, Su H, Zhao X, Liu QH (2018) Smoothing surface trapping states in 3D coral-like CoOOH wrapped-BiVO4 for efficient photoelectrochemical water oxidation. ACS Appl Mater Interfaces 10:6228–6234CrossRef Tang FM, Cheng WR, Su H, Zhao X, Liu QH (2018) Smoothing surface trapping states in 3D coral-like CoOOH wrapped-BiVO4 for efficient photoelectrochemical water oxidation. ACS Appl Mater Interfaces 10:6228–6234CrossRef
28.
Zurück zum Zitat Liu CH, Wang F, Zhang J, Wang K, Qiu Y, Liang Q, Chen ZD (2018) Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett 10:37CrossRef Liu CH, Wang F, Zhang J, Wang K, Qiu Y, Liang Q, Chen ZD (2018) Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett 10:37CrossRef
29.
Zurück zum Zitat Hamid SBA, The SJ, Lai CW, Perathoner S, Centi G (2017) Applied bias photon-to-current conversion efficiency of ZnO enhanced by hybridization with reduced graphene oxide. J. Energy Chem 26:302–308CrossRef Hamid SBA, The SJ, Lai CW, Perathoner S, Centi G (2017) Applied bias photon-to-current conversion efficiency of ZnO enhanced by hybridization with reduced graphene oxide. J. Energy Chem 26:302–308CrossRef
30.
Zurück zum Zitat Liu CH, Wang F, Zhu SS, Xu Y, Liang Q, Chen ZD (2018) Controlled charge-dynamics in cobalt-doped TiO2 nanowire photoanodes for enhanced photoelectrochemical water splitting. J Colloid Interface Sci 530:403–411CrossRef Liu CH, Wang F, Zhu SS, Xu Y, Liang Q, Chen ZD (2018) Controlled charge-dynamics in cobalt-doped TiO2 nanowire photoanodes for enhanced photoelectrochemical water splitting. J Colloid Interface Sci 530:403–411CrossRef
31.
Zurück zum Zitat McDonald KJ, Choi KS (2012) A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ Sci 5:8553–8557CrossRef McDonald KJ, Choi KS (2012) A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ Sci 5:8553–8557CrossRef
32.
Zurück zum Zitat Xia LG, Bai J, Li JH, Zeng QY, Li LS, Zhou BX (2017) High-performance BiVO4 photoanodes cocatalyzed with an ultrathin α-Fe2O3 layer for photoelectrochemical application. Appl Catal B Environ 204:127–133CrossRef Xia LG, Bai J, Li JH, Zeng QY, Li LS, Zhou BX (2017) High-performance BiVO4 photoanodes cocatalyzed with an ultrathin α-Fe2O3 layer for photoelectrochemical application. Appl Catal B Environ 204:127–133CrossRef
33.
Zurück zum Zitat Ye KH, Chai ZS, Gu JW, Yu X, Zhao CX, Zhang YM, Mai WJ (2015) BiOI–BiVO4 photoanodes with significantly improved solar water splitting capability: p–n junction to expand solar adsorption range and facilitate charge carrier dynamics. Nano Energy 18:222–231CrossRef Ye KH, Chai ZS, Gu JW, Yu X, Zhao CX, Zhang YM, Mai WJ (2015) BiOI–BiVO4 photoanodes with significantly improved solar water splitting capability: p–n junction to expand solar adsorption range and facilitate charge carrier dynamics. Nano Energy 18:222–231CrossRef
34.
Zurück zum Zitat Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2:637–644CrossRef Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2:637–644CrossRef
35.
Zurück zum Zitat Wu Z, Yuan X, Wang H, Wu ZB, Jiang LB, Wang H, Zhang L, Xiao ZH, Chen XH, Zeng GM (2017) Facile synthesis of a novel full-spectrum-responsive Co2. 67S4 nanoparticles for UV-, vis-and NIR-driven photocatalysis. Appl Catal B Environ 202:104–111CrossRef Wu Z, Yuan X, Wang H, Wu ZB, Jiang LB, Wang H, Zhang L, Xiao ZH, Chen XH, Zeng GM (2017) Facile synthesis of a novel full-spectrum-responsive Co2. 67S4 nanoparticles for UV-, vis-and NIR-driven photocatalysis. Appl Catal B Environ 202:104–111CrossRef
36.
Zurück zum Zitat Lin X, Xu D, Zheng J, Song M, Che G, Wang Y, Yang Y, Liu C, Zhao L, Chang L (2016) Graphitic carbon nitride quantum dots loaded on leaf-like InVO4/BiVO4 nanoheterostructures with enhanced visible-light photocatalytic activity. J Alloy Compd 688:891–898CrossRef Lin X, Xu D, Zheng J, Song M, Che G, Wang Y, Yang Y, Liu C, Zhao L, Chang L (2016) Graphitic carbon nitride quantum dots loaded on leaf-like InVO4/BiVO4 nanoheterostructures with enhanced visible-light photocatalytic activity. J Alloy Compd 688:891–898CrossRef
37.
Zurück zum Zitat Li H, Sun Y, Cai B, Gan S, Han D, Niu L, Wu T (2015) Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl Catal B Environ 170:206–214CrossRef Li H, Sun Y, Cai B, Gan S, Han D, Niu L, Wu T (2015) Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl Catal B Environ 170:206–214CrossRef
38.
Zurück zum Zitat Yao W, Iwai H, Ye J (2008) Effects of molybdenum substitution on the photocatalytic behavior of BiVO4. Dalton T 11:1426–1430CrossRef Yao W, Iwai H, Ye J (2008) Effects of molybdenum substitution on the photocatalytic behavior of BiVO4. Dalton T 11:1426–1430CrossRef
39.
Zurück zum Zitat Zhang L, Lin CY, Valev VK, Reisner E, Steiner U, Baumberg JJ (2014) Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting. Small 10:3970–3978CrossRef Zhang L, Lin CY, Valev VK, Reisner E, Steiner U, Baumberg JJ (2014) Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting. Small 10:3970–3978CrossRef
40.
Zurück zum Zitat Wu X, Zhao J, Guo S, Wang L, Shi W, Huang H, Liu Y, Kang ZH (2016) Carbon dot and BiVO4 quantum dot composites for overall water splitting via a two-electron pathway. Nanoscale 8:17314–17321CrossRef Wu X, Zhao J, Guo S, Wang L, Shi W, Huang H, Liu Y, Kang ZH (2016) Carbon dot and BiVO4 quantum dot composites for overall water splitting via a two-electron pathway. Nanoscale 8:17314–17321CrossRef
41.
Zurück zum Zitat Li J, Wang F, Meng L, Han M, Guo Y, Sun C (2017) Controlled synthesis of BiVO4/SrTiO3 composite with enhanced sunlight-driven photofunctions for sulfamethoxazole removal. J Colloid Interface Sci 485:116–122CrossRef Li J, Wang F, Meng L, Han M, Guo Y, Sun C (2017) Controlled synthesis of BiVO4/SrTiO3 composite with enhanced sunlight-driven photofunctions for sulfamethoxazole removal. J Colloid Interface Sci 485:116–122CrossRef
42.
Zurück zum Zitat Li W, Zhang SL, Fan QN, Zhang FZ, Xu SL (2017) Hierarchically scaffolded CoP/CoP2 nanoparticles: controllable synthesis and their application as a well-matched bifunctional electrocatalyst for overall water splitting. Nanoscale 9:5677–5685CrossRef Li W, Zhang SL, Fan QN, Zhang FZ, Xu SL (2017) Hierarchically scaffolded CoP/CoP2 nanoparticles: controllable synthesis and their application as a well-matched bifunctional electrocatalyst for overall water splitting. Nanoscale 9:5677–5685CrossRef
43.
Zurück zum Zitat Luo W, Yang Z, Li Z, Zhang J, Liu J, Zhao Z, Wang Z, Yan S, Yu T, Zou ZG (2011) Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ Sci 4:4046–4051CrossRef Luo W, Yang Z, Li Z, Zhang J, Liu J, Zhao Z, Wang Z, Yan S, Yu T, Zou ZG (2011) Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ Sci 4:4046–4051CrossRef
44.
Zurück zum Zitat Li G, Zhang D, Yu JC (2008) Ordered mesoporous BiVO4 through nanocasting: a superior visible light-driven photocatalyst. Chem Mater 20:3983–3992CrossRef Li G, Zhang D, Yu JC (2008) Ordered mesoporous BiVO4 through nanocasting: a superior visible light-driven photocatalyst. Chem Mater 20:3983–3992CrossRef
45.
Zurück zum Zitat Zalfani M, van der Schueren B, Hu ZY, Rooke JC, Bourguiga R, Wu M, Li Y, Tendeloo GV, Su BL (2015) Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity. J Mater Chem A 3:21244–21256CrossRef Zalfani M, van der Schueren B, Hu ZY, Rooke JC, Bourguiga R, Wu M, Li Y, Tendeloo GV, Su BL (2015) Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity. J Mater Chem A 3:21244–21256CrossRef
46.
Zurück zum Zitat Park Y, McDonald KJ, Choi KS (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42:2321–2337CrossRef Park Y, McDonald KJ, Choi KS (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42:2321–2337CrossRef
47.
Zurück zum Zitat Zhang K, Shi XJ, Kim JK, Park JH (2012) Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers. Phys Chem Chem Phys 14:11119–11124CrossRef Zhang K, Shi XJ, Kim JK, Park JH (2012) Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers. Phys Chem Chem Phys 14:11119–11124CrossRef
48.
Zurück zum Zitat Zhong DK, Choi S, Gamelin DR (2011) Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J Am Chem Soc 133:18370–18377CrossRef Zhong DK, Choi S, Gamelin DR (2011) Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J Am Chem Soc 133:18370–18377CrossRef
Metadaten
Titel
Cobalt–phosphate-modified Mo:BiVO4 mesoporous photoelectrodes for enhanced photoelectrochemical water splitting
verfasst von
Changhai Liu
Heng Luo
Yu Xu
Wenchang Wang
Qian Liang
Naotoshi Mitsuzaki
Zhidong Chen
Publikationsdatum
03.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 15/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03658-7

Weitere Artikel der Ausgabe 15/2019

Journal of Materials Science 15/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.