Skip to main content
Erschienen in: Journal of Materials Science 11/2017

21.02.2017 | Original Paper

Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: effect of silane coupling agents on the mechanical and thermal properties of the composites

verfasst von: Aparna K. Balan, Sreejith Mottakkunnu Parambil, Shaniba Vakyath, Jinitha Thulissery Velayudhan, Subair Naduparambath, Purushothaman Etathil

Erschienen in: Journal of Materials Science | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this work is to modify coconut shell powder (CSP) using various silane coupling agents and to study the effect of modification on the interfacial adhesion and mechanical properties of the fillers in the binary blend of thermoplastic polyurethane and natural rubber. Mechanical properties such as tensile strength, tear strength, hardness and abrasion resistance were evaluated. Results revealed that, compared to triethoxyvinylsilane modified CSP composites, glycidyloxypropyltrimethoxysilane treated CSP showed higher tensile strength and better interfacial adhesion with the matrix. The efficiency of the silane treatment is further characterized by the FT-IR analysis of fillers and the morphological study of both the CSP and the composites. FT-IR studies demonstrated that the silyl parts of both silane coupling agents efficiently grafted to the CSP. SEM images of treated CSPs provide ample evidence for the increased mechanical properties of the composites. The increased thermal stability of is evident from the thermo gravimetric analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat De Carvalho AJF, Curvelo AAS, Agnelli JAM (2000) Wood pulp reinforced thermoplastic starch composites. Int J Polym Mater 51:647–660CrossRef De Carvalho AJF, Curvelo AAS, Agnelli JAM (2000) Wood pulp reinforced thermoplastic starch composites. Int J Polym Mater 51:647–660CrossRef
2.
Zurück zum Zitat Luz S, Gonçalves A, Del’Arco A (2007) Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites. Compos A 38:1455–1461CrossRef Luz S, Gonçalves A, Del’Arco A (2007) Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites. Compos A 38:1455–1461CrossRef
3.
Zurück zum Zitat Panthapulakkal S, Zereshkian A, Sain M (2006) Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresour Technol 97:265–272CrossRef Panthapulakkal S, Zereshkian A, Sain M (2006) Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresour Technol 97:265–272CrossRef
4.
Zurück zum Zitat Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRef Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRef
5.
Zurück zum Zitat John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364CrossRef John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364CrossRef
6.
Zurück zum Zitat Rimdusit S, Damrongsakkul S, Wongmanit P, Saramas D, Tiptipakorn S (2011) Characterization of coconut fiber-filled polyvinyl chloride/acrylonitrile styrene acrylate blends. J Reinf Plast Compos 30:1691–1702CrossRef Rimdusit S, Damrongsakkul S, Wongmanit P, Saramas D, Tiptipakorn S (2011) Characterization of coconut fiber-filled polyvinyl chloride/acrylonitrile styrene acrylate blends. J Reinf Plast Compos 30:1691–1702CrossRef
7.
Zurück zum Zitat Bledzki AK, Faruk O (2003) Wood fibre reinforced polypropylene composites: effect of fibre geometry and coupling agent on physico-mechanical properties. Appl Compos Mater 10:365–379CrossRef Bledzki AK, Faruk O (2003) Wood fibre reinforced polypropylene composites: effect of fibre geometry and coupling agent on physico-mechanical properties. Appl Compos Mater 10:365–379CrossRef
8.
Zurück zum Zitat Wang J, Wu W, Wang W, Zhang J (2011) Effect of a coupling agent on the properties of hemp-hurd-powder-filled styrene–butadiene rubber. J Appl Polym Sci 121:681–689CrossRef Wang J, Wu W, Wang W, Zhang J (2011) Effect of a coupling agent on the properties of hemp-hurd-powder-filled styrene–butadiene rubber. J Appl Polym Sci 121:681–689CrossRef
9.
Zurück zum Zitat Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRef Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRef
10.
Zurück zum Zitat Herrera-Franco P, Valadez-Gonzalez A (2004) Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos A 35:339–345CrossRef Herrera-Franco P, Valadez-Gonzalez A (2004) Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos A 35:339–345CrossRef
11.
Zurück zum Zitat Krishna KV, Kanny K (2016) The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Compos B 104:111–117CrossRef Krishna KV, Kanny K (2016) The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Compos B 104:111–117CrossRef
12.
Zurück zum Zitat Xie Y, Hill CA, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A 41:806–819CrossRef Xie Y, Hill CA, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A 41:806–819CrossRef
13.
Zurück zum Zitat John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207CrossRef John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207CrossRef
14.
Zurück zum Zitat Kalia S, Kaith B, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49:1253–1272CrossRef Kalia S, Kaith B, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49:1253–1272CrossRef
15.
Zurück zum Zitat Mróz P, Białas S, Mucha M, Kaczmarek H (2013) Thermogravimetric and DSC testing of poly (lactic acid) nanocomposites. Thermochim Acta 573:186–192CrossRef Mróz P, Białas S, Mucha M, Kaczmarek H (2013) Thermogravimetric and DSC testing of poly (lactic acid) nanocomposites. Thermochim Acta 573:186–192CrossRef
16.
Zurück zum Zitat Cisneros-López E, Pérez-Fonseca A, Fuentes-Talavera F et al (2016) Rotomolded polyethylene-agave fiber composites: effect of fiber surface treatment on the mechanical properties. Polym Eng Sci 56:856–865CrossRef Cisneros-López E, Pérez-Fonseca A, Fuentes-Talavera F et al (2016) Rotomolded polyethylene-agave fiber composites: effect of fiber surface treatment on the mechanical properties. Polym Eng Sci 56:856–865CrossRef
17.
Zurück zum Zitat Valadez-Gonzalez A, Cervantes-Uc J, Olayo R, Herrera-Franco P (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos B 30:309–320CrossRef Valadez-Gonzalez A, Cervantes-Uc J, Olayo R, Herrera-Franco P (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos B 30:309–320CrossRef
18.
Zurück zum Zitat Salmah H, Koay S, Hakimah O (2013) Surface modification of coconut shell powder filled polylactic acid biocomposites. J Thermoplast Compos Mater 26:809–819CrossRef Salmah H, Koay S, Hakimah O (2013) Surface modification of coconut shell powder filled polylactic acid biocomposites. J Thermoplast Compos Mater 26:809–819CrossRef
19.
Zurück zum Zitat Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos B 101:31–45CrossRef Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos B 101:31–45CrossRef
20.
Zurück zum Zitat Ramaraj B (2006) Modified poly (vinyl alcohol) and coconut shell powder composite films: physico-mechanical, thermal properties, and swelling studies. Polym Plast Technol Eng 45:1227–1231CrossRef Ramaraj B (2006) Modified poly (vinyl alcohol) and coconut shell powder composite films: physico-mechanical, thermal properties, and swelling studies. Polym Plast Technol Eng 45:1227–1231CrossRef
21.
Zurück zum Zitat Monteiro S, Terrones L, D’almeida J (2008) Mechanical performance of coir fiber/polyester composites. Polym Test 27:591–595CrossRef Monteiro S, Terrones L, D’almeida J (2008) Mechanical performance of coir fiber/polyester composites. Polym Test 27:591–595CrossRef
22.
Zurück zum Zitat Macedo JdS, Costa MF, Tavares MI, Thire RM (2010) Preparation and characterization of composites based on polyhydroxybutyrate and waste powder from coconut fibers processing. Polym Eng Sci 50:1466–1475CrossRef Macedo JdS, Costa MF, Tavares MI, Thire RM (2010) Preparation and characterization of composites based on polyhydroxybutyrate and waste powder from coconut fibers processing. Polym Eng Sci 50:1466–1475CrossRef
23.
Zurück zum Zitat Chun KS, Husseinsyah S, Osman H (2013) Properties of coconut shell powder-filled polylactic acid ecocomposites: effect of maleic acid. Polym Eng Sci 53:1109–1116CrossRef Chun KS, Husseinsyah S, Osman H (2013) Properties of coconut shell powder-filled polylactic acid ecocomposites: effect of maleic acid. Polym Eng Sci 53:1109–1116CrossRef
24.
Zurück zum Zitat Sareena C, Ramesan M, Purushothaman E (2012) Utilization of coconut shell powder as a novel filler in natural rubber. J Reinf Plast Compos 31:533–547CrossRef Sareena C, Ramesan M, Purushothaman E (2012) Utilization of coconut shell powder as a novel filler in natural rubber. J Reinf Plast Compos 31:533–547CrossRef
25.
Zurück zum Zitat Pradhan SK, Dwarakadasa E, Reucroft PJ (2004) Processing and characterization of coconut shell powder filled UHMWPE. Mater Sci Eng A 367:57–62CrossRef Pradhan SK, Dwarakadasa E, Reucroft PJ (2004) Processing and characterization of coconut shell powder filled UHMWPE. Mater Sci Eng A 367:57–62CrossRef
26.
Zurück zum Zitat Sarki J, Hassan S, Aigbodion V, Oghenevweta J (2011) Potential of using coconut shell particle fillers in eco-composite materials. J Alloys Compd 509:2381–2385CrossRef Sarki J, Hassan S, Aigbodion V, Oghenevweta J (2011) Potential of using coconut shell particle fillers in eco-composite materials. J Alloys Compd 509:2381–2385CrossRef
27.
Zurück zum Zitat Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70:840–846CrossRef Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70:840–846CrossRef
28.
Zurück zum Zitat Al Minnath M, Unnikrishnan G, Purushothaman E (2011) Transport studies of thermoplastic polyurethane/natural rubber (TPU/NR) blends. J Membr Sci 379:361–369CrossRef Al Minnath M, Unnikrishnan G, Purushothaman E (2011) Transport studies of thermoplastic polyurethane/natural rubber (TPU/NR) blends. J Membr Sci 379:361–369CrossRef
29.
Zurück zum Zitat Zimmermann MVG, de Macedo V, Zattera AJ, Santana RMC (2016) Influence of chemical treatments on cellulose fibers for use as reinforcements in poly(ethylene-co-vinyl acetate) composites. Polym Compos 37:1991–2000CrossRef Zimmermann MVG, de Macedo V, Zattera AJ, Santana RMC (2016) Influence of chemical treatments on cellulose fibers for use as reinforcements in poly(ethylene-co-vinyl acetate) composites. Polym Compos 37:1991–2000CrossRef
30.
Zurück zum Zitat Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33CrossRef Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33CrossRef
31.
Zurück zum Zitat Ismail H, Shuhelmy S, Edyham M (2002) The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur Polym J 38:39–47CrossRef Ismail H, Shuhelmy S, Edyham M (2002) The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur Polym J 38:39–47CrossRef
32.
Zurück zum Zitat Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J Appl Polym Sci 116:3212–3219 Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J Appl Polym Sci 116:3212–3219
33.
Zurück zum Zitat Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas S (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56:5617–5627CrossRef Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas S (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56:5617–5627CrossRef
35.
Zurück zum Zitat Gierlinger N, Goswami L, Schmidt M et al (2008) In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections. Biomacromol 9:2194–2201CrossRef Gierlinger N, Goswami L, Schmidt M et al (2008) In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections. Biomacromol 9:2194–2201CrossRef
36.
Zurück zum Zitat Zhou F, Cheng G, Jiang B (2014) Effect of silane treatment on microstructure of sisal fibers. Appl Surf Sci 292:806–812CrossRef Zhou F, Cheng G, Jiang B (2014) Effect of silane treatment on microstructure of sisal fibers. Appl Surf Sci 292:806–812CrossRef
37.
Zurück zum Zitat Tsao C-H, Hsiao Y-H, Hsu C-H, Kuo P-L (2016) Stable lithium deposition generated from ceramic-cross-linked gel polymer electrolytes for lithium anode. ACS Appl Mater Interfaces 8:15216–15224CrossRef Tsao C-H, Hsiao Y-H, Hsu C-H, Kuo P-L (2016) Stable lithium deposition generated from ceramic-cross-linked gel polymer electrolytes for lithium anode. ACS Appl Mater Interfaces 8:15216–15224CrossRef
38.
Zurück zum Zitat Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639CrossRef Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639CrossRef
39.
Zurück zum Zitat Lin Y, Liu S, Peng J, Liu L (2016) The filler–rubber interface and reinforcement in styrene butadiene rubber composites with graphene/silica hybrids: a quantitative correlation with the constrained region. Compos A 86:19–30CrossRef Lin Y, Liu S, Peng J, Liu L (2016) The filler–rubber interface and reinforcement in styrene butadiene rubber composites with graphene/silica hybrids: a quantitative correlation with the constrained region. Compos A 86:19–30CrossRef
40.
Zurück zum Zitat Subair N, Purushothaman E (2016) Sago seed shell: determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 23:1803–1812CrossRef Subair N, Purushothaman E (2016) Sago seed shell: determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 23:1803–1812CrossRef
41.
Zurück zum Zitat Segal L, Creely J, Martin A Jr, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely J, Martin A Jr, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
42.
Zurück zum Zitat Zhao H-M, Du H, Lin J et al (2016) Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil. Sci Total Environ 562:170–178CrossRef Zhao H-M, Du H, Lin J et al (2016) Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil. Sci Total Environ 562:170–178CrossRef
43.
Zurück zum Zitat Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234CrossRef Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234CrossRef
44.
Zurück zum Zitat Ishak MR, Leman Z, Salit MS, Rahman MZA, Uyup MKA, Akhtar R (2013) IFSS, TG, FT-IR spectra of impregnated sugar palm (Arenga pinnata) fibres and mechanical properties of their composites. J Therm Anal Calorim 111:1375–1383CrossRef Ishak MR, Leman Z, Salit MS, Rahman MZA, Uyup MKA, Akhtar R (2013) IFSS, TG, FT-IR spectra of impregnated sugar palm (Arenga pinnata) fibres and mechanical properties of their composites. J Therm Anal Calorim 111:1375–1383CrossRef
45.
Zurück zum Zitat Sajna V, Mohanty S, Nayak SK (2016) Fabrication and characterization of bionanocomposites based on poly (lactic acid), banana fiber and nanoclay. Int J Plast Technol 20:187–201CrossRef Sajna V, Mohanty S, Nayak SK (2016) Fabrication and characterization of bionanocomposites based on poly (lactic acid), banana fiber and nanoclay. Int J Plast Technol 20:187–201CrossRef
46.
Zurück zum Zitat Oza S, Ning H, Ferguson I, Lu N (2014) Effect of surface treatment on thermal stability of the hemp-PLA composites: correlation of activation energy with thermal degradation. Compos B 67:227–232CrossRef Oza S, Ning H, Ferguson I, Lu N (2014) Effect of surface treatment on thermal stability of the hemp-PLA composites: correlation of activation energy with thermal degradation. Compos B 67:227–232CrossRef
47.
Zurück zum Zitat Panaitescu DM, Nicolae CA, Vuluga Z et al (2016) Influence of hemp fibers with modified surface on polypropylene composites. J Ind Eng Chem 37:137–146CrossRef Panaitescu DM, Nicolae CA, Vuluga Z et al (2016) Influence of hemp fibers with modified surface on polypropylene composites. J Ind Eng Chem 37:137–146CrossRef
48.
Zurück zum Zitat George SC, Rajan R, Aprem AS, Thomas S, Kim SS (2016) The fabrication and properties of natural rubber-clay nanocomposites. Polym Test 51:165–173CrossRef George SC, Rajan R, Aprem AS, Thomas S, Kim SS (2016) The fabrication and properties of natural rubber-clay nanocomposites. Polym Test 51:165–173CrossRef
49.
Zurück zum Zitat Jacob M, Thomas S, Varughese KT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64:955–965CrossRef Jacob M, Thomas S, Varughese KT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64:955–965CrossRef
50.
Zurück zum Zitat Ansarifar M, Chugh JP, Haghighat S (2000) Reinforcing effects of precipitated silicas on properties of some vulcanizates of styrene-butadiene rubber. Iran Polym J 9:153–162 Ansarifar M, Chugh JP, Haghighat S (2000) Reinforcing effects of precipitated silicas on properties of some vulcanizates of styrene-butadiene rubber. Iran Polym J 9:153–162
51.
Zurück zum Zitat Mathew L, Narayanankutty SK (2008) Cure characteristics and mechanical properties of HRH bonded nylon-6 short fiber-nanosilica-acrylonitrile butadiene rubber hybrid composite. Polym Plast Technol Eng 48:75–81CrossRef Mathew L, Narayanankutty SK (2008) Cure characteristics and mechanical properties of HRH bonded nylon-6 short fiber-nanosilica-acrylonitrile butadiene rubber hybrid composite. Polym Plast Technol Eng 48:75–81CrossRef
52.
Zurück zum Zitat Prachayawarakorn J, Sangnitidej P, Boonpasith P (2010) Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydr Polym 81:425–433CrossRef Prachayawarakorn J, Sangnitidej P, Boonpasith P (2010) Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydr Polym 81:425–433CrossRef
53.
Zurück zum Zitat Chun KS, Husseinsyah S, Osman H (2012) Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effects of the filler content and silane coupling agent. J Polym Res 19:9859. doi:10.1007/s10965-012-9859-8 CrossRef Chun KS, Husseinsyah S, Osman H (2012) Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effects of the filler content and silane coupling agent. J Polym Res 19:9859. doi:10.​1007/​s10965-012-9859-8 CrossRef
54.
Zurück zum Zitat Nie Y, Hübert T (2012) Surface modification of carbon nanofibers by glycidoxysilane for altering the conductive and mechanical properties of epoxy composites. Compos A 43:1357–1364CrossRef Nie Y, Hübert T (2012) Surface modification of carbon nanofibers by glycidoxysilane for altering the conductive and mechanical properties of epoxy composites. Compos A 43:1357–1364CrossRef
55.
Zurück zum Zitat Mat NSC, Ismail H, Othman N (2016) Curing characteristics and tear properties of bentonite filled ethylene propylene diene (epdm) rubber composites. Procedia Chem 19:394–400CrossRef Mat NSC, Ismail H, Othman N (2016) Curing characteristics and tear properties of bentonite filled ethylene propylene diene (epdm) rubber composites. Procedia Chem 19:394–400CrossRef
57.
Zurück zum Zitat Lin Y, Zeng Z, Zhu J, Chen S, Yuan X, Liu L (2015) Graphene nanosheets decorated with ZnO nanoparticles: facile synthesis and promising application for enhancing the mechanical and gas barrier properties of rubber nanocomposites. RSC Adv 5:57771–57780CrossRef Lin Y, Zeng Z, Zhu J, Chen S, Yuan X, Liu L (2015) Graphene nanosheets decorated with ZnO nanoparticles: facile synthesis and promising application for enhancing the mechanical and gas barrier properties of rubber nanocomposites. RSC Adv 5:57771–57780CrossRef
58.
Zurück zum Zitat Ruggerone R, Geiser V, Dalle Vacche S, Leterrier Y, Manson J-AE (2010) Immobilized polymer fraction in hyperbranched polymer/silica nanocomposite suspensions. Macromolecules 43:10490–10497CrossRef Ruggerone R, Geiser V, Dalle Vacche S, Leterrier Y, Manson J-AE (2010) Immobilized polymer fraction in hyperbranched polymer/silica nanocomposite suspensions. Macromolecules 43:10490–10497CrossRef
Metadaten
Titel
Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: effect of silane coupling agents on the mechanical and thermal properties of the composites
verfasst von
Aparna K. Balan
Sreejith Mottakkunnu Parambil
Shaniba Vakyath
Jinitha Thulissery Velayudhan
Subair Naduparambath
Purushothaman Etathil
Publikationsdatum
21.02.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0907-y

Weitere Artikel der Ausgabe 11/2017

Journal of Materials Science 11/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.