Skip to main content
Erschienen in:

08.12.2022

Cognitive Decision-Making Based on a Non-linear Similarity Measure Using an Intuitionistic Fuzzy Set Framework

verfasst von: Pranjal Talukdar, Palash Dutta, Soumendra Goala

Erschienen in: Cognitive Computation | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Similarity measure (SM) between two intuitionistic fuzzy sets (IFSs) plays a crucial role in cognitive decision-making, for instance, in cognitive medical diagnosis, pattern recognition, criminal investigation, etc., in dealing with uncertainty. An SM between two IFSs signifies the degree of similarity or the exactness of two IFSs. Inherent inadequacies in SMs may lead to erroneous results; therefore, it is vital and significant to use an efficient SM while dealing with cognitive decision-making (DM) problems in uncertain environments. This study proposes a novel SM of IFSs to enhance the capability of producing fair outcomes in cognitive decision-making problems. The proposed SM has provided the similarity values between different pairs of IFSs, describing its advantages and efficiency, whereas many of the existing SMs have produced contradictory results. Furthermore, the proposed SM has been applied to solve certain biologically inspired cognitive medical diagnosis problems, pattern recognition problems, and criminal investigation problems. The results of the comparative study demonstrate how the proposed SM of IFSs conquers and tides over the shortcomings of the previous existing SMs. Many of the existing SMs produced identical similarity values for different pairs of IFSs, thereby serving as unfit for offering the appropriate exactness of information carried by the pairs of IFSs. Against such a backdrop, the proposed SM selects the best alternative for the cognitive decision-making problems and, hence, in a self-evident manner, evinces its applicability and feasibility in such environments. When delving into the biologically inspired multi-criteria decision-making (MCDM) methods under uncertainty with human cognition, SMs of IFSs serve as one of the essential devices. Accordingly, this study merits attention as it accounts for a veritable fundamental research endeavour with the larger goal of making available consistent and proficient SMs in the literature so that the various MCDM methods become more efficient and reliable. This study attempts to define an advanced and novel SM of IFSs to assist and enrich the MCDM methods using a sophisticated approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986;20:87–96.MATH Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986;20:87–96.MATH
3.
Zurück zum Zitat Atanassov K, Gargov G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989;31(3):343–9.MathSciNetMATH Atanassov K, Gargov G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989;31(3):343–9.MathSciNetMATH
4.
Zurück zum Zitat Arora R, Garg H. Prioritized averaging/geometric aggregation operators under the intuitionistic fuzzy soft set environment. Scientia Iranica. 2018;25(1):466–82. Arora R, Garg H. Prioritized averaging/geometric aggregation operators under the intuitionistic fuzzy soft set environment. Scientia Iranica. 2018;25(1):466–82.
5.
Zurück zum Zitat Garg H. Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making. Comp Ind Eng. 2016;101:53–69. Garg H. Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making. Comp Ind Eng. 2016;101:53–69.
6.
Zurück zum Zitat Garg H. A new generalized improved score function of interval valued intuitionistic fuzzy sets and applications in expert systems. Appl Soft Comput. 2016;38:988–99. Garg H. A new generalized improved score function of interval valued intuitionistic fuzzy sets and applications in expert systems. Appl Soft Comput. 2016;38:988–99.
7.
Zurück zum Zitat Garg H. Novel intuitionistic fuzzy decision-making method based on an improved operation laws and its application. Eng Appl Artif Intell. 2017;60:164–74. Garg H. Novel intuitionistic fuzzy decision-making method based on an improved operation laws and its application. Eng Appl Artif Intell. 2017;60:164–74.
8.
Zurück zum Zitat Garg H, Arora R. Bonferroni mean aggregation operators under intuitionistic fuzzy soft set environment and their applications to decision-making. J Oper Res Soc. 2018;69(11):1711–24. Garg H, Arora R. Bonferroni mean aggregation operators under intuitionistic fuzzy soft set environment and their applications to decision-making. J Oper Res Soc. 2018;69(11):1711–24.
9.
Zurück zum Zitat Garg H, Arora R. Novel scaled prioritized intuitionistic fuzzy soft interaction averaging aggregation operators and their application to multi criteria decision making. Eng Appl Artif Intell. 2018;71:100–12. Garg H, Arora R. Novel scaled prioritized intuitionistic fuzzy soft interaction averaging aggregation operators and their application to multi criteria decision making. Eng Appl Artif Intell. 2018;71:100–12.
10.
Zurück zum Zitat Nayagam VLG, Jeevaraj S, Dhanasekaran P. An intuitionistic fuzzy multi-criteria decision-making method based on non-hesitance score for interval-valued intuitionistic fuzzy sets. Soft Comput. 2017;21:7077–82.MATH Nayagam VLG, Jeevaraj S, Dhanasekaran P. An intuitionistic fuzzy multi-criteria decision-making method based on non-hesitance score for interval-valued intuitionistic fuzzy sets. Soft Comput. 2017;21:7077–82.MATH
11.
Zurück zum Zitat Prabhjot K. Intuitionistic fuzzy sets best credibilistic fuzzy c means clustering for medical image segmentation. Int J Inf Technol. 2017;9(2):345–51. Prabhjot K. Intuitionistic fuzzy sets best credibilistic fuzzy c means clustering for medical image segmentation. Int J Inf Technol. 2017;9(2):345–51.
12.
Zurück zum Zitat Oztaysi B, Onar SC, Goztepe K, Kahraman C. Evaluation of research proposals for grant funding using interval-valued intuitionistic fuzzy sets. Soft Comput. 2017;21(5):1203–18. Oztaysi B, Onar SC, Goztepe K, Kahraman C. Evaluation of research proposals for grant funding using interval-valued intuitionistic fuzzy sets. Soft Comput. 2017;21(5):1203–18.
13.
Zurück zum Zitat Szmidt E, Kacprzyk J. Distances between intuitionistic fuzzy sets. Fuzzy Setsand Systems. 2000;114:505–18.MathSciNetMATH Szmidt E, Kacprzyk J. Distances between intuitionistic fuzzy sets. Fuzzy Setsand Systems. 2000;114:505–18.MathSciNetMATH
14.
Zurück zum Zitat Wang WQ, Xin XL. Distance measure between intuitionistic fuzzy sets. Pattern Recogn Lett. 2005;26:2063–9. Wang WQ, Xin XL. Distance measure between intuitionistic fuzzy sets. Pattern Recogn Lett. 2005;26:2063–9.
15.
Zurück zum Zitat Grzegorzewski P. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy Sets Syst. 2004;148:319–28.MathSciNetMATH Grzegorzewski P. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy Sets Syst. 2004;148:319–28.MathSciNetMATH
16.
Zurück zum Zitat Chen TY. A note on distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy Sets Syst. 2007;158:2523–5.MathSciNetMATH Chen TY. A note on distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy Sets Syst. 2007;158:2523–5.MathSciNetMATH
17.
Zurück zum Zitat Li DF, Chuntian C. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recogn Lett. 2002;23:221–5.MATH Li DF, Chuntian C. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recogn Lett. 2002;23:221–5.MATH
18.
Zurück zum Zitat Mitchell HB. On the Dengfeng-Chuntian similarity measure and its application to pattern recognition. Pattern Recogn Lett. 2003;24:3101–4. Mitchell HB. On the Dengfeng-Chuntian similarity measure and its application to pattern recognition. Pattern Recogn Lett. 2003;24:3101–4.
19.
Zurück zum Zitat Hung WL, Yang MS. Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. Pattern Recogn Lett. 2004;25:1603–11. Hung WL, Yang MS. Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. Pattern Recogn Lett. 2004;25:1603–11.
20.
Zurück zum Zitat Liang Z, Shi PF. Similarity measures on intuitionistic fuzzy sets. Pattern Recogn Lett. 2003;24:2687–93.MATH Liang Z, Shi PF. Similarity measures on intuitionistic fuzzy sets. Pattern Recogn Lett. 2003;24:2687–93.MATH
21.
Zurück zum Zitat Li Y, Olson DL, Qin Z. Similarity measures between intuitionistic fuzzy (vague) sets: A comparative analysis. Pattern Recogn Lett. 2007;28:278–85. Li Y, Olson DL, Qin Z. Similarity measures between intuitionistic fuzzy (vague) sets: A comparative analysis. Pattern Recogn Lett. 2007;28:278–85.
22.
Zurück zum Zitat Xu ZS. Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making. Fuzzy Optim Decis Making. 2007;6:109–21.MathSciNetMATH Xu ZS. Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making. Fuzzy Optim Decis Making. 2007;6:109–21.MathSciNetMATH
23.
Zurück zum Zitat Singh P. A note on a unified approach to similarity measures between intuitionistic fuzzy sets. International Journal of Intelligent System. 2016;31:1129–32. Singh P. A note on a unified approach to similarity measures between intuitionistic fuzzy sets. International Journal of Intelligent System. 2016;31:1129–32.
24.
Zurück zum Zitat Chachi J, Taheri SM. A unified approach to similarity measures between intuitionistic fuzzy sets. Int J Intell Syst. 2013;28:669–85. Chachi J, Taheri SM. A unified approach to similarity measures between intuitionistic fuzzy sets. Int J Intell Syst. 2013;28:669–85.
25.
Zurück zum Zitat Xu ZS, Chen J. An overview of distance and similarity measures of intuitionistic fuzzy sets. Internat J Uncertain Fuzziness Knowledge-Based Systems. 2008;16:529–55.MathSciNetMATH Xu ZS, Chen J. An overview of distance and similarity measures of intuitionistic fuzzy sets. Internat J Uncertain Fuzziness Knowledge-Based Systems. 2008;16:529–55.MathSciNetMATH
26.
Zurück zum Zitat Xia M, Xu Z. Some new similarity measures for intuitionistic fuzzy values and their application in group decision making. J Syst Sci Syst Eng. 2010;19(4):430–52. Xia M, Xu Z. Some new similarity measures for intuitionistic fuzzy values and their application in group decision making. J Syst Sci Syst Eng. 2010;19(4):430–52.
27.
Zurück zum Zitat Ye J. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math Comput Model. 2011;53:91–7.MathSciNetMATH Ye J. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math Comput Model. 2011;53:91–7.MathSciNetMATH
28.
Zurück zum Zitat Hwang CM, Yang MS, Hung WL, Lee MG. A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition. Inf Sci. 2012;189:93–109.MathSciNetMATH Hwang CM, Yang MS, Hung WL, Lee MG. A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition. Inf Sci. 2012;189:93–109.MathSciNetMATH
29.
Zurück zum Zitat Li J, Deng G, Li H, Zeng W. The relationship between similarity measure and entropy of intuitionistic fuzzy sets. Inf Sci. 2012;188:314–21.MathSciNetMATH Li J, Deng G, Li H, Zeng W. The relationship between similarity measure and entropy of intuitionistic fuzzy sets. Inf Sci. 2012;188:314–21.MathSciNetMATH
30.
Zurück zum Zitat Boran FE, Akay D. A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Inf Sci. 2014;255:45–57.MathSciNetMATH Boran FE, Akay D. A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Inf Sci. 2014;255:45–57.MathSciNetMATH
31.
Zurück zum Zitat Papakostas GA, Hatzimichailidis AG, Kaburlasos VG. Distance and similarity measures between intuitionistic fuzzy sets, a comparative analysis from a pattern recognition point of view. Pattern Recogn Lett. 2013;34(14):1609–22. Papakostas GA, Hatzimichailidis AG, Kaburlasos VG. Distance and similarity measures between intuitionistic fuzzy sets, a comparative analysis from a pattern recognition point of view. Pattern Recogn Lett. 2013;34(14):1609–22.
32.
Zurück zum Zitat Song Y, Wang X, Lei L, Xue A. A new similarity measure between intuitionistic fuzzy sets and its application to pattern recognition. Abstr Appl Anal. 2014;1–11. Song Y, Wang X, Lei L, Xue A. A new similarity measure between intuitionistic fuzzy sets and its application to pattern recognition. Abstr Appl Anal. 2014;1–11.
33.
Zurück zum Zitat Farhadinia B. An efficient similarity measure for intuitionistic fuzzy sets. Soft Comput. 2014;18:85–94.MATH Farhadinia B. An efficient similarity measure for intuitionistic fuzzy sets. Soft Comput. 2014;18:85–94.MATH
35.
Zurück zum Zitat Chutia R, Gogoi MK. Fuzzy risk analysis in poultry farming using a new similarity measure on generalised fuzzy numbers. Comput Ind Eng. 2018;115:543–58. Chutia R, Gogoi MK. Fuzzy risk analysis in poultry farming using a new similarity measure on generalised fuzzy numbers. Comput Ind Eng. 2018;115:543–58.
36.
Zurück zum Zitat Borah G, Dutta P. Multi-attribute cognitive decision making via convex combination of weighted vector similarity measures for single-valued neutrosophic sets. Cogn Comput. 2021;13:1019–33. Borah G, Dutta P. Multi-attribute cognitive decision making via convex combination of weighted vector similarity measures for single-valued neutrosophic sets. Cogn Comput. 2021;13:1019–33.
37.
Zurück zum Zitat Muhammad A, Waseem N. Similarity measures for new hybrid models: mF sets and mF soft sets, Punjab University. J Math. 2019;51(6):115–30.MathSciNet Muhammad A, Waseem N. Similarity measures for new hybrid models: mF sets and mF soft sets, Punjab University. J Math. 2019;51(6):115–30.MathSciNet
38.
Zurück zum Zitat Zhan J, Malik HM, AkramM. Novel decision-making algorithms based on intuitionistic fuzzy rough environment. Int J Mach Learn Cybernet. 2019;10(6):1459–85. Zhan J, Malik HM, AkramM. Novel decision-making algorithms based on intuitionistic fuzzy rough environment. Int J Mach Learn Cybernet. 2019;10(6):1459–85.
39.
Zurück zum Zitat Aram M, Shahzadi S. Novel intuitionistic fuzzy soft multiple-attribute decision making methods. Neural Comput Appl. 2018;29(7):435–47. Aram M, Shahzadi S. Novel intuitionistic fuzzy soft multiple-attribute decision making methods. Neural Comput Appl. 2018;29(7):435–47.
40.
Zurück zum Zitat Karunanbigai MG, Akram M, Sivasankar S, Palanivel K. Clustering algorithm for intuitionistic fuzzy graphs. Int J Uncertain Fuzziness Knowledge-Based Syst. 2017;25(3):367–83.MathSciNetMATH Karunanbigai MG, Akram M, Sivasankar S, Palanivel K. Clustering algorithm for intuitionistic fuzzy graphs. Int J Uncertain Fuzziness Knowledge-Based Syst. 2017;25(3):367–83.MathSciNetMATH
41.
Zurück zum Zitat De SK, Biswas R, Roy AR. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 2001;117:209–13.MATH De SK, Biswas R, Roy AR. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 2001;117:209–13.MATH
42.
43.
Zurück zum Zitat Hong DH, Kim C. A note on similarity measures between vague sets and between elements. Inf Sci. 1999;115:83–96.MathSciNetMATH Hong DH, Kim C. A note on similarity measures between vague sets and between elements. Inf Sci. 1999;115:83–96.MathSciNetMATH
44.
Zurück zum Zitat Li F, Xu Z. Similarity measures between vague sets. J Software. 2001;12(6):922–7. Li F, Xu Z. Similarity measures between vague sets. J Software. 2001;12(6):922–7.
45.
Zurück zum Zitat Li Y, Chi Z, Yan D. Similarity measures between vague sets and vague entropy. J Comput Sci. 2002;29:129–32. Li Y, Chi Z, Yan D. Similarity measures between vague sets and vague entropy. J Comput Sci. 2002;29:129–32.
46.
Zurück zum Zitat Sanchez E. Medical diagnosis and composite fuzzy relations. Gupta MM et al. (Eds.) Advances in Fuzzy Set Theory and Applications, Amsterdam, North-Holland. 1979; 437–44. Sanchez E. Medical diagnosis and composite fuzzy relations. Gupta MM et al. (Eds.) Advances in Fuzzy Set Theory and Applications, Amsterdam, North-Holland. 1979; 437–44.
47.
Zurück zum Zitat Szmidt E, Kacprzyk JA, similarity measure for intuitionistic fuzzy sets and its application in sup-porting medical diagnostic reasoning.in: Artificial Intelligence and Soft Computing - ICAISC,. Lecture Notes in Computer Science, 3070. Berlin, Heidelberg: Springer; 2004. p. 388–93. Szmidt E, Kacprzyk JA, similarity measure for intuitionistic fuzzy sets and its application in sup-porting medical diagnostic reasoning.in: Artificial Intelligence and Soft Computing - ICAISC,. Lecture Notes in Computer Science, 3070. Berlin, Heidelberg: Springer; 2004. p. 388–93.
48.
Zurück zum Zitat Vlachos IK, Sergiadis GD. Intuitionistic fuzzy information applications to pattern recognition. Pattern Recogn Lett. 2007;28(2):197–206. Vlachos IK, Sergiadis GD. Intuitionistic fuzzy information applications to pattern recognition. Pattern Recogn Lett. 2007;28(2):197–206.
49.
Zurück zum Zitat Maheshwari S, Srivastava A. Study on divergence measures for intuitionistic fuzzy sets and its application in medical diagnosis. J Appl Anal Comput. 2016;6:772–89.MathSciNetMATH Maheshwari S, Srivastava A. Study on divergence measures for intuitionistic fuzzy sets and its application in medical diagnosis. J Appl Anal Comput. 2016;6:772–89.MathSciNetMATH
50.
Zurück zum Zitat Ngan RT, Sonb LH, Cuongc BC, Alid M. H-max distance measure of intuitionistic fuzzy sets in decision making. Appl Soft Comput. 2018;69:393–425. Ngan RT, Sonb LH, Cuongc BC, Alid M. H-max distance measure of intuitionistic fuzzy sets in decision making. Appl Soft Comput. 2018;69:393–425.
51.
Zurück zum Zitat Dutta P, Goala S. Fuzzy decision making in medical diagnosis using an advanced distance measure on intuitionistic fuzzy sets. Open Cyber Syst J. 2018;12:136–49. Dutta P, Goala S. Fuzzy decision making in medical diagnosis using an advanced distance measure on intuitionistic fuzzy sets. Open Cyber Syst J. 2018;12:136–49.
52.
Zurück zum Zitat Goala S, Dutta P. A fuzzy multicriteria decision-making approach to crime linkage. Int J Inform Technol Syst Appr. 2018;11(2):31–50. Goala S, Dutta P. A fuzzy multicriteria decision-making approach to crime linkage. Int J Inform Technol Syst Appr. 2018;11(2):31–50.
53.
Zurück zum Zitat Goala S, Dutta P, Talukdar P. Intuitionistic fuzzy multi criteria decision making approach to crime linkage using resemblance function. Int Appl Comput Math. 2019;5:112.MATH Goala S, Dutta P, Talukdar P. Intuitionistic fuzzy multi criteria decision making approach to crime linkage using resemblance function. Int Appl Comput Math. 2019;5:112.MATH
Metadaten
Titel
Cognitive Decision-Making Based on a Non-linear Similarity Measure Using an Intuitionistic Fuzzy Set Framework
verfasst von
Pranjal Talukdar
Palash Dutta
Soumendra Goala
Publikationsdatum
08.12.2022
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 1/2023
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10071-x