Skip to main content
Erschienen in: Cognitive Computation 6/2023

05.06.2023

Cognitively Enhanced Versions of Capuchin Search Algorithm for Feature Selection in Medical Diagnosis: a COVID-19 Case Study

verfasst von: Malik Braik, Mohammed A. Awadallah, Mohammed Azmi Al-Betar, Abdelaziz I. Hammouri, Omar A. Alzubi

Erschienen in: Cognitive Computation | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the performance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed methods in exploring the feature space and selecting the most useful features for classification studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Braik M. Enhanced ali baba and the forty thieves algorithm for feature selection. Neural Comput Applic. 2022:1–32. Braik M. Enhanced ali baba and the forty thieves algorithm for feature selection. Neural Comput Applic. 2022:1–32.
2.
Zurück zum Zitat Arora S, Anand P. Binary butterfly optimization approaches for feature selection. Expert Syst Appl. 2019;116:147–60.CrossRef Arora S, Anand P. Binary butterfly optimization approaches for feature selection. Expert Syst Appl. 2019;116:147–60.CrossRef
3.
Zurück zum Zitat Malik PK, Sharma R, Singh R, Gehlot A, Satapathy SC, Alnumay WS, Pelusi D, Ghosh U, Nayak J. Industrial internet of things and its applications in industry 4.0: State of the art. Comput Commun. 2021;166:125–39. Malik PK, Sharma R, Singh R, Gehlot A, Satapathy SC, Alnumay WS, Pelusi D, Ghosh U, Nayak J. Industrial internet of things and its applications in industry 4.0: State of the art. Comput Commun. 2021;166:125–39.
4.
Zurück zum Zitat Awadallah MA, Al-Betar MA, Braik MS, Hammouri A, Doush IA, Zitar RA. An enhanced binary rat swarm optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection. Comput Biol Med. 2022:105675. Awadallah MA, Al-Betar MA, Braik MS, Hammouri A, Doush IA, Zitar RA. An enhanced binary rat swarm optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection. Comput Biol Med. 2022:105675.
5.
Zurück zum Zitat Awadallah MA, Hammouri A, Al-Betar MA, Braik MS, AbdElaziz M. Binary horse herd optimization algorithm with crossover operators for feature selection. Computers Biol Med. 2022:105152. Awadallah MA, Hammouri A, Al-Betar MA, Braik MS, AbdElaziz M. Binary horse herd optimization algorithm with crossover operators for feature selection. Computers Biol Med. 2022:105152.
6.
Zurück zum Zitat Albashish D, Hammouri A, Braik M, Atwan J, Sahran S. Binary biogeography-based optimization based SVM-RFE for feature selection. Appl Soft Comput. 2021;101:107026. Albashish D, Hammouri A, Braik M, Atwan J, Sahran S. Binary biogeography-based optimization based SVM-RFE for feature selection. Appl Soft Comput. 2021;101:107026.
7.
Zurück zum Zitat Zhang C, Soda P, Bi J, Fan G, Almpanidis G, Garcia S, Ding W. An empirical study on the joint impact of feature selection and data resampling on imbalance classification. Appl Intell. 2022:1–13. Zhang C, Soda P, Bi J, Fan G, Almpanidis G, Garcia S, Ding W. An empirical study on the joint impact of feature selection and data resampling on imbalance classification. Appl Intell. 2022:1–13.
8.
Zurück zum Zitat Chong J, Tjurin P, Niemelä M, Jämsä T, Farrahi V. Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms. Gait Posture. 2021;89:45–53.CrossRef Chong J, Tjurin P, Niemelä M, Jämsä T, Farrahi V. Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms. Gait Posture. 2021;89:45–53.CrossRef
9.
Zurück zum Zitat Mafarja M, Qasem A, Heidari AA, Aljarah I, Faris H, Mirjalili S. Efficient hybrid nature-inspired binary optimizers for feature selection. Cogn Comput. 2020;12(1):150–75. Mafarja M, Qasem A, Heidari AA, Aljarah I, Faris H, Mirjalili S. Efficient hybrid nature-inspired binary optimizers for feature selection. Cogn Comput. 2020;12(1):150–75.
10.
Zurück zum Zitat Zhou R, Niu L. Feature selection of network data via \(\ell _{2, p}\) regularization. Cogn Comput. 2020;12(6):1217–32. Zhou R, Niu L. Feature selection of network data via \(\ell _{2, p}\) regularization. Cogn Comput. 2020;12(6):1217–32.
11.
Zurück zum Zitat Nanda Gopal V, Al-Turjman F, Kumar R, Anand L, Rajesh M. Feature selection and classification in breast cancer prediction using IoT and machine learning. Measurement. 2021;178:109442. Nanda Gopal V, Al-Turjman F, Kumar R, Anand L, Rajesh M. Feature selection and classification in breast cancer prediction using IoT and machine learning. Measurement. 2021;178:109442.
12.
Zurück zum Zitat Iqra Batool and Tamim Ahmed Khan. Software fault prediction using data mining, machine learning and deep learning techniques: A systematic literature review. Comput Electr Eng. 2022;100:107886.CrossRef Iqra Batool and Tamim Ahmed Khan. Software fault prediction using data mining, machine learning and deep learning techniques: A systematic literature review. Comput Electr Eng. 2022;100:107886.CrossRef
13.
Zurück zum Zitat Mehmood A, Khan MA, Sharif M, Khan SA, Shaheen M, Saba T, Riaz N, Ashraf I. Prosperous human gait recognition: an end-to-end system based on pre-trained CNN features selection. Multimed Tools Appl. 2020:1–21. Mehmood A, Khan MA, Sharif M, Khan SA, Shaheen M, Saba T, Riaz N, Ashraf I. Prosperous human gait recognition: an end-to-end system based on pre-trained CNN features selection. Multimed Tools Appl. 2020:1–21.
14.
Zurück zum Zitat Cai W, Wei Z. Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci Remote Sens Lett. 2020. Cai W, Wei Z. Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci Remote Sens Lett. 2020.
15.
Zurück zum Zitat Raj DM, Mohanasundaram R. An efficient filter-based feature selection model to identify significant features from high-dimensional microarray data. Arab J Sci Eng. 2020;45(4):2619–30.CrossRef Raj DM, Mohanasundaram R. An efficient filter-based feature selection model to identify significant features from high-dimensional microarray data. Arab J Sci Eng. 2020;45(4):2619–30.CrossRef
16.
Zurück zum Zitat Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM, Pasupuleti S, Mishra R, Pillai S, Jo O. COVID-19 patient health prediction using boosted random forest algorithm. Front Public Health. 2020;8:357. Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM, Pasupuleti S, Mishra R, Pillai S, Jo O. COVID-19 patient health prediction using boosted random forest algorithm. Front Public Health. 2020;8:357.
17.
Zurück zum Zitat Bhosale YH, Singh P, Sridhar Patnaik K. COVID-19 and associated lung disease classification using deep learning. In International Conference on Innovative Computing and Communications: Proceedings of ICICC 2022. 2022;3:283–95. Springer. Bhosale YH, Singh P, Sridhar Patnaik K. COVID-19 and associated lung disease classification using deep learning. In International Conference on Innovative Computing and Communications: Proceedings of ICICC 2022. 2022;3:283–95. Springer.
18.
Zurück zum Zitat Bhosale YH, Sridhar Patnaik K. Application of deep learning techniques in diagnosis of COVID-19 (coronavirus): a systematic review. Neural Process Lett. 2022:1–53. Bhosale YH, Sridhar Patnaik K. Application of deep learning techniques in diagnosis of COVID-19 (coronavirus): a systematic review. Neural Process Lett. 2022:1–53.
19.
Zurück zum Zitat Bhosale YH, Sridhar Patnaik K. Puldi-covid: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest x-ray images to minimize severity and mortality rates. Biomed Signal Process Control. 2023;81:104445. Bhosale YH, Sridhar Patnaik K. Puldi-covid: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest x-ray images to minimize severity and mortality rates. Biomed Signal Process Control. 2023;81:104445.
20.
Zurück zum Zitat Singh D, Mathioudakis AG, Higham A. Chronic obstructive pulmonary disease and COVID-19: interrelationships. Curr Opin Pulm Med. 2022;28(2):76. Singh D, Mathioudakis AG, Higham A. Chronic obstructive pulmonary disease and COVID-19: interrelationships. Curr Opin Pulm Med. 2022;28(2):76.
21.
Zurück zum Zitat Renuka Devi D, Sasikala S. Online feature selection (OFS) with accelerated bat algorithm (ABA) and ensemble incremental deep multiple layer perceptron (EIDMLP) for big data streams. J Big Data. 2019;6(1):1–20. Renuka Devi D, Sasikala S. Online feature selection (OFS) with accelerated bat algorithm (ABA) and ensemble incremental deep multiple layer perceptron (EIDMLP) for big data streams. J Big Data. 2019;6(1):1–20.
22.
Zurück zum Zitat Chen R-C, Dewi C, Huang S-W, Caraka RE. Selecting critical features for data classification based on machine learning methods. J Big Data. 2020;7(1):1–26. Chen R-C, Dewi C, Huang S-W,  Caraka RE. Selecting critical features for data classification based on machine learning methods. J Big Data. 2020;7(1):1–26.
23.
Zurück zum Zitat Hammami M, Bechikh S, Hung C-C, BenSaid L. A multi-objective hybrid filter-wrapper evolutionary approach for feature selection. Memetic Computing. 2019;11(2):193–208. Hammami M, Bechikh S, Hung C-C, BenSaid L. A multi-objective hybrid filter-wrapper evolutionary approach for feature selection. Memetic Computing. 2019;11(2):193–208.
24.
Zurück zum Zitat Messaoudi I, Kamel N. A multi-objective bat algorithm for community detection on dynamic social networks. Appl Intell. 2019;49(6):2119–36.CrossRef Messaoudi I, Kamel N. A multi-objective bat algorithm for community detection on dynamic social networks. Appl Intell. 2019;49(6):2119–36.CrossRef
25.
Zurück zum Zitat Abdollahzadeh B, Gharehchopogh FS. A multi-objective optimization algorithm for feature selection problems. Eng Comput. 2022;38(3):1845–63.CrossRef Abdollahzadeh B, Gharehchopogh FS. A multi-objective optimization algorithm for feature selection problems. Eng Comput. 2022;38(3):1845–63.CrossRef
26.
Zurück zum Zitat Yanyu H, Zhao L, Li Z, Dong X, Tiantian X, Zhao Y. Classifying the multi-omics data of gastric cancer using a deep feature selection method. Expert Syst Appl. 2022;200:116813.CrossRef Yanyu H, Zhao L, Li Z, Dong X, Tiantian X, Zhao Y. Classifying the multi-omics data of gastric cancer using a deep feature selection method. Expert Syst Appl. 2022;200:116813.CrossRef
27.
Zurück zum Zitat Braik M, Sheta A, Al-Hiary H. A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm. Neural Comput Appl. 2021;33(7):2515–47.CrossRef Braik M, Sheta A, Al-Hiary H. A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm. Neural Comput Appl. 2021;33(7):2515–47.CrossRef
28.
Zurück zum Zitat Braik M. A hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case study. Neural Process Lett. 2021;53(4):2873–916.CrossRef Braik M. A hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case study. Neural Process Lett. 2021;53(4):2873–916.CrossRef
29.
Zurück zum Zitat Ramu S, Ranganathan R, Ramamoorthy R. Capuchin search algorithm based task scheduling in cloud computing environment. Yanbu J Eng Sci. 2022;19(1):18–29.CrossRef Ramu S, Ranganathan R, Ramamoorthy R. Capuchin search algorithm based task scheduling in cloud computing environment. Yanbu J Eng Sci. 2022;19(1):18–29.CrossRef
30.
Zurück zum Zitat Song X-F, Zhang Y, Gong D-W, Gao X-Z. A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data. IEEE Trans Cybernetics. 2021. Song X-F, Zhang Y, Gong D-W, Gao X-Z. A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data. IEEE Trans Cybernetics. 2021.
31.
Zurück zum Zitat Zhang F, Mei Y, Nguyen S, Zhang M. Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling. IEEE Trans Cybernetics. 2020;51(4):1797–811. Zhang F, Mei Y, Nguyen S, Zhang M. Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling. IEEE Trans Cybernetics. 2020;51(4):1797–811.
32.
Zurück zum Zitat Zhang Y, Gong D-W, Gao X-Z, Tian T, Sun X-Y. Binary differential evolution with self-learning for multi-objective feature selection. Inform Sci. 2020;507:67–85.MathSciNetCrossRefMATH Zhang Y, Gong D-W, Gao X-Z, Tian T, Sun X-Y. Binary differential evolution with self-learning for multi-objective feature selection. Inform Sci. 2020;507:67–85.MathSciNetCrossRefMATH
33.
Zurück zum Zitat Ahn G, Hur S. Efficient genetic algorithm for feature selection for early time series classification. Comput Ind Eng. 2020;142:106345.CrossRef Ahn G, Hur S. Efficient genetic algorithm for feature selection for early time series classification. Comput Ind Eng. 2020;142:106345.CrossRef
34.
Zurück zum Zitat Awadallah MA, Al-Betar MA, Hammouri A, Alomari OA. Binary JAYA algorithm with adaptive mutation for feature selection. Arab J Sci Eng. 2020;45(12):10875–90. Awadallah MA, Al-Betar MA, Hammouri A, Alomari OA. Binary JAYA algorithm with adaptive mutation for feature selection. Arab J Sci Eng. 2020;45(12):10875–90.
35.
Zurück zum Zitat Kirkpatrick S. C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated annealing science. 1983;220(4598):671–80. Kirkpatrick S. C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated annealing science. 1983;220(4598):671–80.
36.
Zurück zum Zitat Jeong IS, Kim HK, Kim TH, Lee DH, Kim KJ, Kang SH. A feature selection approach based on simulated annealing for detecting various denial of service attacks. Softw Netw. 2018;2018(1):173–90. Jeong IS, Kim HK, Kim TH, Lee DH, Kim KJ, Kang SH. A feature selection approach based on simulated annealing for detecting various denial of service attacks. Softw Netw. 2018;2018(1):173–90.
37.
Zurück zum Zitat Mafarja MM, Mirjalili S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing. 2017;260:302–312. Mafarja MM, Mirjalili S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing. 2017;260:302–312.
38.
Zurück zum Zitat Yan C, Ma J, Luo H, Patel A. Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets. Chemom Intell Lab Syst. 2019;184:102–11.CrossRef Yan C, Ma J, Luo H, Patel A. Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets. Chemom Intell Lab Syst. 2019;184:102–11.CrossRef
39.
Zurück zum Zitat Jia H, Li J, Song W, Peng X, Lang C, Li Y. Spotted hyena optimization algorithm with simulated annealing for feature selection. IEEE Access. 2019;7:71943–62.CrossRef Jia H, Li J, Song W, Peng X, Lang C, Li Y. Spotted hyena optimization algorithm with simulated annealing for feature selection. IEEE Access. 2019;7:71943–62.CrossRef
40.
Zurück zum Zitat Bindu MG, Sabu MK. A hybrid feature selection approach using artificial bee colony and genetic algorithm. In 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA). 2020;211–6. IEEE. Bindu MG, Sabu MK. A hybrid feature selection approach using artificial bee colony and genetic algorithm. In 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA). 2020;211–6. IEEE.
41.
Zurück zum Zitat Abdel-Basset M, Ding W, El-Shahat D. A hybrid harris hawks optimization algorithm with simulated annealing for feature selection. Artif Intell Rev. 2021;54(1):593–637.CrossRef Abdel-Basset M, Ding W, El-Shahat D. A hybrid harris hawks optimization algorithm with simulated annealing for feature selection. Artif Intell Rev. 2021;54(1):593–637.CrossRef
42.
Zurück zum Zitat Hancer E. Differential evolution for feature selection: a fuzzy wrapper-filter approach. Soft Comput. 2019;23(13):5233–48.CrossRef Hancer E. Differential evolution for feature selection: a fuzzy wrapper-filter approach. Soft Comput. 2019;23(13):5233–48.CrossRef
43.
Zurück zum Zitat Jiang Y, Liu X, Yan G, Xiao J. Modified binary cuckoo search for feature selection: a hybrid filter-wrapper approach. In 2017 13th International Conference on Computational Intelligence and Security (CIS). 2017:488–91. IEEE. Jiang Y, Liu X, Yan G, Xiao J. Modified binary cuckoo search for feature selection: a hybrid filter-wrapper approach. In 2017 13th International Conference on Computational Intelligence and Security (CIS). 2017:488–91. IEEE.
44.
Zurück zum Zitat Lai C-M, Yeh W-C, Chang C-Y. Gene selection using information gain and improved simplified swarm optimization. Neurocomputing. 2016;218:331–8.CrossRef Lai C-M, Yeh W-C, Chang C-Y. Gene selection using information gain and improved simplified swarm optimization. Neurocomputing. 2016;218:331–8.CrossRef
45.
Zurück zum Zitat Ke L, Li M, Wang L, Deng S, Ye J, Yu X. Improved swarm-optimization-based filter-wrapper gene selection from microarray data for gene expression tumor classification. Pattern Anal Appl. 2022:1–18. Ke L, Li M, Wang L, Deng S, Ye J, Yu X. Improved swarm-optimization-based filter-wrapper gene selection from microarray data for gene expression tumor classification. Pattern Anal Appl. 2022:1–18.
46.
Zurück zum Zitat Liu W, Wang J. A brief survey on nature-inspired metaheuristics for feature selection in classification in this decade. In 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC). 2019;424–9. IEEE. Liu W, Wang J. A brief survey on nature-inspired metaheuristics for feature selection in classification in this decade. In 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC). 2019;424–9. IEEE.
47.
Zurück zum Zitat Musa JD. A theory of software reliability and its application. IEEE Trans Softw Eng. 1975;(3):312–27. Musa JD. A theory of software reliability and its application. IEEE Trans Softw Eng. 1975;(3):312–27.
48.
Zurück zum Zitat Sheta A. Reliability growth modeling for software fault detection using particle swarm optimization. In 2006 IEEE International Conference on Evolutionary Computation. 2006:3071–8. IEEE. Sheta A. Reliability growth modeling for software fault detection using particle swarm optimization. In 2006 IEEE International Conference on Evolutionary Computation. 2006:3071–8. IEEE.
49.
Zurück zum Zitat Crow LH. Reliability analysis for complex repairable systems, soc. industrial and applied mathematics, reliability and biometry. Proceedings of Statistical Analysis of Life Length. 1974;25:248–53. Crow LH. Reliability analysis for complex repairable systems, soc. industrial and applied mathematics, reliability and biometry. Proceedings of Statistical Analysis of Life Length. 1974;25:248–53.
50.
Zurück zum Zitat Yamada S, Ohba M, Osaki S. S-shaped software reliability growth models and their applications. IEEE Trans Reliab. 1984;33(4):289–92.CrossRef Yamada S, Ohba M, Osaki S. S-shaped software reliability growth models and their applications. IEEE Trans Reliab. 1984;33(4):289–92.CrossRef
51.
Zurück zum Zitat Mirjalili S, Lewis A. S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput. 2013;9:1–14.CrossRef Mirjalili S, Lewis A. S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput. 2013;9:1–14.CrossRef
52.
Zurück zum Zitat Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85.
53.
Zurück zum Zitat Jin Liu Y, Sheng WL, Guo R, Wang Y, Wang J. Improved asd classification using dynamic functional connectivity and multi-task feature selection. Pattern Recogn Lett. 2020;138:82–7.CrossRef Jin Liu Y, Sheng WL, Guo R, Wang Y, Wang J. Improved asd classification using dynamic functional connectivity and multi-task feature selection. Pattern Recogn Lett. 2020;138:82–7.CrossRef
54.
Zurück zum Zitat Bhosale YH, Sridhar Patnaik K. IoT deployable lightweight deep learning application for COVID-19 detection with lung diseases using raspberrypi. In 2022 International Conference on IoT and Blockchain Technology (ICIBT). 2022;1–6. IEEE. Bhosale YH, Sridhar Patnaik K. IoT deployable lightweight deep learning application for COVID-19 detection with lung diseases using raspberrypi. In 2022 International Conference on IoT and Blockchain Technology (ICIBT). 2022;1–6. IEEE.
55.
Zurück zum Zitat Bhosale YH, Zanwar S, Ahmed Z, Nakrani M, Bhuyar D, Shinde U. Deep convolutional neural network based COVID-19 classification from radiology x-ray images for iot enabled devices. In 2022 8th International Conference on Advanced Computing and Communication Systems. 2022;1:398–1402. IEEE. Bhosale YH, Zanwar S, Ahmed Z, Nakrani M, Bhuyar D, Shinde U. Deep convolutional neural network based COVID-19 classification from radiology x-ray images for iot enabled devices. In 2022 8th International Conference on Advanced Computing and Communication Systems. 2022;1:398–1402. IEEE.
56.
Zurück zum Zitat Simon D. Biogeography-based optimization. IEEE Trans Evol Comput. 2008;12(6):702–13.CrossRef Simon D. Biogeography-based optimization. IEEE Trans Evol Comput. 2008;12(6):702–13.CrossRef
57.
Zurück zum Zitat Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst. 2015;89:228–49.CrossRef Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst. 2015;89:228–49.CrossRef
58.
Zurück zum Zitat Venkata Rao R, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inform Sci. 2012;183(1):1–15. Venkata Rao R, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inform Sci. 2012;183(1):1–15.
59.
Zurück zum Zitat Viktorin A, Pluhacek M, Senkerik R. Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In 2016 IEEE Congress on Evolutionary Computation (CEC). 2016:4797–803. IEEE. Viktorin A, Pluhacek M, Senkerik R. Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In 2016 IEEE Congress on Evolutionary Computation (CEC). 2016:4797–803. IEEE.
60.
Zurück zum Zitat Kennedy J, Eberhart R. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks. 1995;4:1942–8. IEEE. Kennedy J, Eberhart R. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks. 1995;4:1942–8. IEEE.
61.
Zurück zum Zitat New metaheuristic algorithm for solving optimization problems. Fatma A Hashim, Essam H Houssein, Kashif Hussain, Mai S Mabrouk, and Walid Al-Atabany. Honey badger algorithm. Math Comput Simul. 2022;192:84–110. New metaheuristic algorithm for solving optimization problems. Fatma A Hashim, Essam H Houssein, Kashif Hussain, Mai S Mabrouk, and Walid Al-Atabany. Honey badger algorithm. Math Comput Simul. 2022;192:84–110.
Metadaten
Titel
Cognitively Enhanced Versions of Capuchin Search Algorithm for Feature Selection in Medical Diagnosis: a COVID-19 Case Study
verfasst von
Malik Braik
Mohammed A. Awadallah
Mohammed Azmi Al-Betar
Abdelaziz I. Hammouri
Omar A. Alzubi
Publikationsdatum
05.06.2023
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 6/2023
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10149-0

Weitere Artikel der Ausgabe 6/2023

Cognitive Computation 6/2023 Zur Ausgabe