Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Wireless Personal Communications 3/2021

24.04.2019

Collaborative Mobile Edge Computing in eV2X: A Solution for Low-Cost Driver Assistance Systems

verfasst von: Arghavan Keivani, Farzad Ghayoor, Jules-Raymond Tapamo

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Collision avoidance systems are of great importance in advanced driver assistance systems (ADAS) to increase the level of safety. However, as a result of their excessive costs, are not considered as a feature in lower-end vehicles. The concept of vehicular communication has emerged recently and added a new dimension for promoting safety in automotive. In this paper, the opportunities for implementation of the cost-effective ADAS through next generation of vehicular communication are discussed. A conceptual model for a vision-based driver assistance system based on collaborative mobile edge computing (MEC) is proposed. Cloudlets are the edges of the 5G cellular network and are capable of providing MEC solutions to their connected devices. The proposed system monitors the vehicles driving in front of an ego car and notifies the driver upon detecting hazardous conditions caused by other vehicles movements. This system can be employed as a cost-effective driver assistance system and has the potential to reach the mass market and be used in all ranges of vehicles including the lower-end models.
Literatur
1.
Zurück zum Zitat Keivani, A., Ghayoor, F., & Tapamo, J. R. (2017). A vision-based driver assistance system using collaborative edge computing. In Global Wireless Summit (GWS). Cape Town. Keivani, A., Ghayoor, F., & Tapamo, J. R. (2017). A vision-based driver assistance system using collaborative edge computing. In Global Wireless Summit (GWS). Cape Town.
2.
Zurück zum Zitat Trivedi, M. M., Gandhi, T., & McCall, J. (2007). Looking-in and looking-out of a vehicle: Computer-vision-based enhanced vehicle safety. IEEE Transactions on Intelligent Transportation Systems, 8(1), 108–120. CrossRef Trivedi, M. M., Gandhi, T., & McCall, J. (2007). Looking-in and looking-out of a vehicle: Computer-vision-based enhanced vehicle safety. IEEE Transactions on Intelligent Transportation Systems, 8(1), 108–120. CrossRef
3.
Zurück zum Zitat Cherng, S., et al. (2009). Critical motion detection of nearby moving vehicles in a vision-based driver-assistance system. IEEE Transactions on Intelligent Transportation Systems, 10(1), 70–82. CrossRef Cherng, S., et al. (2009). Critical motion detection of nearby moving vehicles in a vision-based driver-assistance system. IEEE Transactions on Intelligent Transportation Systems, 10(1), 70–82. CrossRef
4.
Zurück zum Zitat Sivaraman, S., & Trivedi, M. M. (2013). Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE Transactions on Intelligent Transportation Systems, 14(4), 1773–1795. CrossRef Sivaraman, S., & Trivedi, M. M. (2013). Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE Transactions on Intelligent Transportation Systems, 14(4), 1773–1795. CrossRef
5.
Zurück zum Zitat Horgan, J., et al. (2015). Vision-based driver assistance systems: Survey, taxonomy and advances. In IEEE 18th international conference on intelligent transportation systems (ITSC). Las Palmas. Horgan, J., et al. (2015). Vision-based driver assistance systems: Survey, taxonomy and advances. In IEEE 18th international conference on intelligent transportation systems (ITSC). Las Palmas.
6.
Zurück zum Zitat Nieto, M., et al. (2016). Optimising computer vision based ADAS: Vehicle detection case study. IET Intelligent Transport Systems, 10(3), 157–164. CrossRef Nieto, M., et al. (2016). Optimising computer vision based ADAS: Vehicle detection case study. IET Intelligent Transport Systems, 10(3), 157–164. CrossRef
7.
Zurück zum Zitat Velez, G., & Otaegui, O. (2017). Embedding vision-based advanced driver assistance systems: A survey. IET Intelligent Transport Systems, 11(3), 103–112. CrossRef Velez, G., & Otaegui, O. (2017). Embedding vision-based advanced driver assistance systems: A survey. IET Intelligent Transport Systems, 11(3), 103–112. CrossRef
8.
Zurück zum Zitat Nieto, M., et al. (2015). On creating vision-based advanced driver assistance systems. IET Intelligent Transport Systems, 9(1), 59–66. CrossRef Nieto, M., et al. (2015). On creating vision-based advanced driver assistance systems. IET Intelligent Transport Systems, 9(1), 59–66. CrossRef
9.
Zurück zum Zitat He, W., Yan, G., & Xu, L. D. (2014). Developing vehicular data cloud services in the IoT environment. IEEE Transactions on Industrial Informatics, 10(2), 1587–1595. CrossRef He, W., Yan, G., & Xu, L. D. (2014). Developing vehicular data cloud services in the IoT environment. IEEE Transactions on Industrial Informatics, 10(2), 1587–1595. CrossRef
10.
Zurück zum Zitat Keivani, A., Ghayoor, F., & Tapamo, J. R. (2018). A review of recent methods of task scheduling in cloud computing. In 19th IEEE mediterranean electrotechnical conference (MELECON). Marrakesh. Keivani, A., Ghayoor, F., & Tapamo, J. R. (2018). A review of recent methods of task scheduling in cloud computing. In 19th IEEE mediterranean electrotechnical conference (MELECON). Marrakesh.
11.
Zurück zum Zitat Mearian, L. (2013). Self driving cars could create 1 Gb of data a second. Computer World. Mearian, L. (2013). Self driving cars could create 1 Gb of data a second. Computer World.
12.
Zurück zum Zitat Shi, W., et al. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646. CrossRef Shi, W., et al. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646. CrossRef
13.
Zurück zum Zitat Mukhtar, A., Xia, L., & Tang, T. B. (2015). Vehicle detection techniques for collision avoidance systems: A review. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2318–2338. CrossRef Mukhtar, A., Xia, L., & Tang, T. B. (2015). Vehicle detection techniques for collision avoidance systems: A review. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2318–2338. CrossRef
14.
Zurück zum Zitat Dollar, P., et al. (2012). Pedestrian detection: An evaluation of the state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4), 743–761. CrossRef Dollar, P., et al. (2012). Pedestrian detection: An evaluation of the state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4), 743–761. CrossRef
15.
Zurück zum Zitat Sivaraman, S., & Trivedi, M. M. (2013). Vehicle detection by independent parts for urban driver assistance. IEEE Transactions on Intelligent Transportation Systems, 14(4), 1597–1608. CrossRef Sivaraman, S., & Trivedi, M. M. (2013). Vehicle detection by independent parts for urban driver assistance. IEEE Transactions on Intelligent Transportation Systems, 14(4), 1597–1608. CrossRef
16.
Zurück zum Zitat Gaikwad, V., & Lokhande, S. (2015). Lane departure identification for advanced driver assistance. IEEE Transactions on Intelligent Transportation Systems, 16(2), 910–918. Gaikwad, V., & Lokhande, S. (2015). Lane departure identification for advanced driver assistance. IEEE Transactions on Intelligent Transportation Systems, 16(2), 910–918.
17.
Zurück zum Zitat Mogelmose, A., Trivedi, M. M., & Moeslund, T. B. (2012). Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey. IEEE Transactions on Intelligent Transportation Systems, 13(4), 1484–1497. CrossRef Mogelmose, A., Trivedi, M. M., & Moeslund, T. B. (2012). Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey. IEEE Transactions on Intelligent Transportation Systems, 13(4), 1484–1497. CrossRef
18.
Zurück zum Zitat Fritsch, J., et al. (2008). Towards a human-like vision system for driver assistance. In 2008 IEEE intelligent vehicles symposium. IEEE. Fritsch, J., et al. (2008). Towards a human-like vision system for driver assistance. In 2008 IEEE intelligent vehicles symposium. IEEE.
19.
Zurück zum Zitat Sotelo, M. A., et al. (2004). Vision-based adaptive cruise control for intelligent road vehicles. In 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS)(IEEE Cat. No. 04CH37566). IEEE. Sotelo, M. A., et al. (2004). Vision-based adaptive cruise control for intelligent road vehicles. In 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS)(IEEE Cat. No. 04CH37566). IEEE.
20.
Zurück zum Zitat Keivani, A., Tapamo, J. R., & Ghayoor, F. (2017). Motion-based moving object detection and tracking using automatic k-means. In IEEE AFRICON. Cape Town. Keivani, A., Tapamo, J. R., & Ghayoor, F. (2017). Motion-based moving object detection and tracking using automatic k-means. In IEEE AFRICON. Cape Town.
21.
Zurück zum Zitat Ren, B., et al. (2014). Vision-based forward collision warning system design supported by a field-test verification platform. In IEEE intelligent vehicles symposium proceedings. Dearborn. Ren, B., et al. (2014). Vision-based forward collision warning system design supported by a field-test verification platform. In IEEE intelligent vehicles symposium proceedings. Dearborn.
22.
Zurück zum Zitat Chen, G., et al. (2014). A forward collision avoidance system adopting multi-feature vehicle detection. In IEEE international conference on consumer electronics. Taipei. Chen, G., et al. (2014). A forward collision avoidance system adopting multi-feature vehicle detection. In IEEE international conference on consumer electronics. Taipei.
23.
Zurück zum Zitat Lin, H.Y., et al. (2012). Lane departure and front collision warning using a single camera. In IEEE international symposium on intelligent signal processing and communications systems (ISPACS). Taipei. Lin, H.Y., et al. (2012). Lane departure and front collision warning using a single camera. In IEEE international symposium on intelligent signal processing and communications systems (ISPACS). Taipei.
24.
Zurück zum Zitat Gu, Q., et al. (2015). Vision-based multi-scaled vehicle detection and distance relevant mix tracking for driver assistance system. Optical Review, 22(2), 197–209. CrossRef Gu, Q., et al. (2015). Vision-based multi-scaled vehicle detection and distance relevant mix tracking for driver assistance system. Optical Review, 22(2), 197–209. CrossRef
25.
Zurück zum Zitat Ozaki, N., et al. (2015). Implementation and evaluation of image recognition algorithm for an intelligent vehicle using heterogeneous multi-core SoC. In 20th Asia and South Pacific design automation conference. Chiba. Ozaki, N., et al. (2015). Implementation and evaluation of image recognition algorithm for an intelligent vehicle using heterogeneous multi-core SoC. In 20th Asia and South Pacific design automation conference. Chiba.
26.
Zurück zum Zitat Petrovai, A., Danescu, R., & Nedevschi, S. (2015). A stereovision based approach for detecting and tracking lane and forward obstacles on mobile devices. In IEEE intelligent vehicles symposium (IV). Seoul. Petrovai, A., Danescu, R., & Nedevschi, S. (2015). A stereovision based approach for detecting and tracking lane and forward obstacles on mobile devices. In IEEE intelligent vehicles symposium (IV). Seoul.
27.
Zurück zum Zitat 802.11-2016 I.S.N. (2016). Standard for information technology—specific requirements—part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. 802.11-2016 I.S.N. (2016). Standard for information technology—specific requirements—part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications.
28.
Zurück zum Zitat Sun, S. H., et al. (2017). Support for vehicle-to-everything services based on LTE. IEEE Wireless Communications, 23(3), 4–8. CrossRef Sun, S. H., et al. (2017). Support for vehicle-to-everything services based on LTE. IEEE Wireless Communications, 23(3), 4–8. CrossRef
29.
Zurück zum Zitat Araniti, G., et al. (2013). LTE for vehicular networking: A survey. IEEE Communications Magazine, 51(5), 148–157. CrossRef Araniti, G., et al. (2013). LTE for vehicular networking: A survey. IEEE Communications Magazine, 51(5), 148–157. CrossRef
30.
Zurück zum Zitat Chen, S., et al. (2017). Vehicle-to-everything (v2x) services supported by LTE-based systems and 5G. IEEE Communications Standards Magazine, 1(2), 70–76. CrossRef Chen, S., et al. (2017). Vehicle-to-everything (v2x) services supported by LTE-based systems and 5G. IEEE Communications Standards Magazine, 1(2), 70–76. CrossRef
31.
Zurück zum Zitat GPP. (2017). Study on enhancement of 3GPP support for 5G V2X Services, 3GPP. GPP. (2017). Study on enhancement of 3GPP support for 5G V2X Services, 3GPP.
32.
33.
Zurück zum Zitat Ojeda-Andablo, J.A., et al. (2016). Support and monitoring trajectory paths for vehicles using mobile devices. In International conference on electronics, communications and computers (CONIELECOMP). Cholula. Ojeda-Andablo, J.A., et al. (2016). Support and monitoring trajectory paths for vehicles using mobile devices. In International conference on electronics, communications and computers (CONIELECOMP). Cholula.
34.
Zurück zum Zitat Meng, R., et al. (2015). OmniView: A mobile collaborative system for assisting drivers with a map of surrounding traffic. In International conference on computing, networking and communications (ICNC). Garden Grove. Meng, R., et al. (2015). OmniView: A mobile collaborative system for assisting drivers with a map of surrounding traffic. In International conference on computing, networking and communications (ICNC). Garden Grove.
35.
Zurück zum Zitat Satyanarayanan, M., et al. (2009). The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23. CrossRef Satyanarayanan, M., et al. (2009). The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23. CrossRef
36.
Zurück zum Zitat Andrews, J. G., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082. CrossRef Andrews, J. G., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082. CrossRef
37.
Zurück zum Zitat Samsung, Galaxy S8 Specifications. Samsung. Samsung, Galaxy S8 Specifications. Samsung.
38.
Zurück zum Zitat García-Pérez, C., Merino, P. (2017). Experimental evaluation of fog computing techniques to reduce latency in LTE networks. In Emerging Telecommunications Technologies (pp. 1–17). García-Pérez, C., Merino, P. (2017). Experimental evaluation of fog computing techniques to reduce latency in LTE networks. In Emerging Telecommunications Technologies (pp. 1–17).
Metadaten
Titel
Collaborative Mobile Edge Computing in eV2X: A Solution for Low-Cost Driver Assistance Systems
verfasst von
Arghavan Keivani
Farzad Ghayoor
Jules-Raymond Tapamo
Publikationsdatum
24.04.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06401-2

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe