Skip to main content

2021 | OriginalPaper | Buchkapitel

Collision-Free Path Following of an Autonomous Vehicle Using NMPC

verfasst von : Ngo-Quoc-Huy Tran, Ionela Prodan, Nguyen-Duy-Minh Phan

Erschienen in: Advances in Engineering Research and Application

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with the obstacle avoidance problem for an autonomous vehicle using NMPC (Nonlinear Model Predictive Control) while following an a priori given path. The repulsive potential of the operating space is constructed from the bounded convex regions describing the static obstacles for collision-free navigation. The contribution lies in using the Hausdorff distances among the obstacles and the agent in order to activate/inactivate the repulsive potential field. This potential field component is introduced in a NMPC framework to penalize collision. This proposal shows good results in simulations and comparisons with our previous work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
I.e., the computational complexity increases exponentially with the number of binary variables used in the problem formulation.
 
2
This vessel was identified and developed in the Marine Cybernetics Laboratory at Norwegian University of Science and Technology.
 
3
I.e., our previous work which uses Chebyshev center instead of Hausdorff distance.
 
4
For simplicity, the Coriolis matrix is neglected.
 
5
Safe distance, Ds is equal to the maximum length of a vessel’s hull.
 
6
The prediction horizon is chosen enough large to guarantee obstacle avoidance but not too large because of the computational burden of the solver.
 
7
It’s worth noting that the ship is very close the fixed obstacle 1 but does not collide due to the repulsive field.
 
Literatur
1.
Zurück zum Zitat Wang, R., Liu, J.: Trajectory tracking control of a 6-DOF quadrotor UAV with input saturation via backstepping. J. Franklin Inst. 355(7), 3288–3309 (2018)MathSciNetCrossRef Wang, R., Liu, J.: Trajectory tracking control of a 6-DOF quadrotor UAV with input saturation via backstepping. J. Franklin Inst. 355(7), 3288–3309 (2018)MathSciNetCrossRef
2.
Zurück zum Zitat Matraji, I., Al-Durra, A., Haryono, A., Al-Wahedi, K., Abou-Khousa, M.: Trajectory tracking control of skid-steered mobile robot based on adaptive second order sliding mode control. Control Eng. Pract. 72, 167–176 (2018)CrossRef Matraji, I., Al-Durra, A., Haryono, A., Al-Wahedi, K., Abou-Khousa, M.: Trajectory tracking control of skid-steered mobile robot based on adaptive second order sliding mode control. Control Eng. Pract. 72, 167–176 (2018)CrossRef
3.
Zurück zum Zitat Li, L., Dong, K., Guo, G.: Trajectory tracking control of underactuated surface vessel with full state constraints. Asian J. Control (2020) Li, L., Dong, K., Guo, G.: Trajectory tracking control of underactuated surface vessel with full state constraints. Asian J. Control (2020)
4.
Zurück zum Zitat Stoican, F., Prodan, I., Grøtli, E.I., Nguyen, N.T.: Inspection trajectory planning for 3D structures under a mixed-integer framework. In: 2019 IEEE 15th International Conference on Control and Automation (ICCA). pp. 1349–1354. IEEE (2019) Stoican, F., Prodan, I., Grøtli, E.I., Nguyen, N.T.: Inspection trajectory planning for 3D structures under a mixed-integer framework. In: 2019 IEEE 15th International Conference on Control and Automation (ICCA). pp. 1349–1354. IEEE (2019)
5.
Zurück zum Zitat Wang, H., Huang, Y., Khajepour, A., Zhang, Y., Rasekhipour, Y., Cao, D.: Crash mitigation in motion planning for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 20(9), 3313–3323 (2019)CrossRef Wang, H., Huang, Y., Khajepour, A., Zhang, Y., Rasekhipour, Y., Cao, D.: Crash mitigation in motion planning for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 20(9), 3313–3323 (2019)CrossRef
6.
Zurück zum Zitat Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H Freeman, New York (2002) Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H Freeman, New York (2002)
7.
Zurück zum Zitat Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. 57(1–4), 65 (2010)CrossRef Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. 57(1–4), 65 (2010)CrossRef
8.
Zurück zum Zitat Tran, N., Prodan, I., Grøtli, E., Lefevre, L.: Potential-field constructions in an MPC framework: application for safe navigation in a variable coastal environment. IFACPapersOnLine 51(20), 307–312 (2018) Tran, N., Prodan, I., Grøtli, E., Lefevre, L.: Potential-field constructions in an MPC framework: application for safe navigation in a variable coastal environment. IFACPapersOnLine 51(20), 307–312 (2018)
9.
Zurück zum Zitat Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, Cambridge (2004)CrossRef Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, Cambridge (2004)CrossRef
10.
Zurück zum Zitat Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, New York (2013)MATH Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, New York (2013)MATH
11.
Zurück zum Zitat Kraft, D.: Computing the Hausdorff distance of two sets from their signed distance functions. arXiv preprint arXiv:1812.06740 (2018) Kraft, D.: Computing the Hausdorff distance of two sets from their signed distance functions. arXiv preprint arXiv:​1812.​06740 (2018)
12.
Zurück zum Zitat Feng, J., Lu, S.: Performance analysis of various activation functions in artificial neural networks. J. Phys. Conf. Ser. vol. 1237, p. 022030. IOP Publishing (2019) Feng, J., Lu, S.: Performance analysis of various activation functions in artificial neural networks. J. Phys. Conf. Ser. vol. 1237, p. 022030. IOP Publishing (2019)
13.
Zurück zum Zitat Srinivasan, P., Guastoni, L., Azizpour, H., Schlatter, P., Vinuesa, R.: Predictions of turbulent shear flows using deep neural networks. Phys. Rev. Fluids 4(5), 054603 (2019)CrossRef Srinivasan, P., Guastoni, L., Azizpour, H., Schlatter, P., Vinuesa, R.: Predictions of turbulent shear flows using deep neural networks. Phys. Rev. Fluids 4(5), 054603 (2019)CrossRef
14.
Zurück zum Zitat Fossen, T.I.: Marine control systems–guidance. navigation, and control of ships, rigs and underwater vehicles. Marine Cybernetics, Trondheim, Norway, Org. Number NO 985 195 005 MVA (2002). www.marinecybernetics.com, ISBN: 82 92356 00 2 Fossen, T.I.: Marine control systems–guidance. navigation, and control of ships, rigs and underwater vehicles. Marine Cybernetics, Trondheim, Norway, Org. Number NO 985 195 005 MVA (2002). www.​marinecybernetic​s.​com, ISBN: 82 92356 00 2
15.
Zurück zum Zitat Zheng, H., Negenborn, R.R., Lodewijks, G.: Trajectory tracking of autonomous vessels using model predictive control. IFAC Proceedings, vol. 47(3), 8812–8818 (2014) Zheng, H., Negenborn, R.R., Lodewijks, G.: Trajectory tracking of autonomous vessels using model predictive control. IFAC Proceedings, vol. 47(3), 8812–8818 (2014)
16.
Zurück zum Zitat Wachter, A., Biegler, L.T.: On the implementation of an interior-point filter line- search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetCrossRef Wachter, A., Biegler, L.T.: On the implementation of an interior-point filter line- search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetCrossRef
17.
Zurück zum Zitat Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi – A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation (2018, in press) Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi – A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation (2018, in press)
Metadaten
Titel
Collision-Free Path Following of an Autonomous Vehicle Using NMPC
verfasst von
Ngo-Quoc-Huy Tran
Ionela Prodan
Nguyen-Duy-Minh Phan
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-64719-3_27

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.