Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.04.2016 | Original Article | Ausgabe 2/2016

Engineering with Computers 2/2016

Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting

Zeitschrift:
Engineering with Computers > Ausgabe 2/2016
Autoren:
Amir Saghatforoush, Masoud Monjezi, Roohollah Shirani Faradonbeh, Danial Jahed Armaghani

Abstract

Blasting is the process of use of explosives to excavate or remove the rock mass. The main objective of blasting operation is to provide proper rock fragmentation and to avoid undesirable environmental impacts such as ground vibration, flyrock and back-break. Therefore, proper predicting and subsequently optimizing these impacts may reduce damage on facilities and equipment. In this study, an artificial neural network (ANN) was developed to predict flyrock and back-break resulting from blasting. To do this, 97 blasting works in Delkan iron mine, Iran, were investigated and required blasting parameters were collected. The most influential parameters on flyrock and back-break, i.e. burden, spacing, hole length, stemming, and powder factor were considered as model inputs. Results of absolute error (Ea) and root mean square error (RMSE) (0.0137 and 0.063 for Ea and RMSE, respectively) reveal that ANN as a powerful tool can predict flyrock and back-break with high degree of accuracy. In addition, this paper presents a new metaheuristic approximation approach based on the ant colony optimization (ACO) for solving the problem of flyrock and back-break in Delkan iron mine. Considering changeable parameters of the ACO algorithm, blasting pattern parameters were optimized to minimize results of flyrock and back-break. Eventually, implementing ACO algorithm, reductions of 61 and 58 % were observed in flyrock and back-break results, respectively.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2016

Engineering with Computers 2/2016 Zur Ausgabe