Skip to main content

2014 | OriginalPaper | Buchkapitel

15. Combined Effect of Global Warming and Buildings Envelope on the Performance of Ground Source Heat Pump Systems

verfasst von : Mohamad Kharseh, Lobna Altorkmany, Mohammed Al-Khawaja, Ferri Hassani

Erschienen in: Progress in Sustainable Energy Technologies: Generating Renewable Energy

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Heating and cooling systems as well as domestic hot water account for over 50 % of the world’s energy consumption. Due to their high thermal performance, ground source heat pump systems (GSHP) have been increasingly used to reduce energy consumption. The thermal performance of GSHP systems strongly depends on the temperature difference between indoor and ground operation temperature. This temperature difference is a function of mean annual air temperature and energy demand for heating and cooling over the year. The thermal load of a building, on the other hand is influenced by the thermal quality of the building envelope (TQBE) and outdoor temperature. Over the time, there is a change in heating and cooling load of buildings due to two reasons; improving the comfort requirements and outdoor temperature change. The overall aim of the current work is to study the impact of climatic changes in combination with TQBE on driving energy of GSHP. This was achieved by comparing the driving energy of the GSHP for different global warming (GW) scenarios and different TQBE. Under climate conditions of selected cities (Stockholm, Roma, and Riyadh), the current study shows that GW reduces the driving energy of GSHPs in cold climates. In contrast, GW increases the driving energy of GSHPs in hot climates. Also it was shown that buildings with poor TQBE are more sensitive to GW. Furthermore, the improvement of TQBE reduces the driving energy more in cold climates than in hot or mild climates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hepbasli A (2005) Thermodynamic analysis of a ground-source heat pump system for district heating. Int J Energy Res 29:671–687CrossRef Hepbasli A (2005) Thermodynamic analysis of a ground-source heat pump system for district heating. Int J Energy Res 29:671–687CrossRef
2.
Zurück zum Zitat Kharseh M (2009) Reduction of prime energy consumption in the Middle East by GSHP systems. Licentiate Thesis, Luleå University of Technology Kharseh M (2009) Reduction of prime energy consumption in the Middle East by GSHP systems. Licentiate Thesis, Luleå University of Technology
3.
Zurück zum Zitat Kharseh M, Nordell B (2011) Sustainable heating and cooling systems for agriculture. Int J Energy Res 35:415–422CrossRef Kharseh M, Nordell B (2011) Sustainable heating and cooling systems for agriculture. Int J Energy Res 35:415–422CrossRef
4.
Zurück zum Zitat De Swardt CA, Meyer JP (2001) A performance comparison between an air-source and a ground-source reversible heat pump. Int J Energy Res 25:899–910CrossRef De Swardt CA, Meyer JP (2001) A performance comparison between an air-source and a ground-source reversible heat pump. Int J Energy Res 25:899–910CrossRef
5.
Zurück zum Zitat Kharseh M, Altorkmany L, Nordell B (2011) Global warming’s impact on the performance of GSHP. Renew Energy 36:1485–1491CrossRef Kharseh M, Altorkmany L, Nordell B (2011) Global warming’s impact on the performance of GSHP. Renew Energy 36:1485–1491CrossRef
6.
Zurück zum Zitat Rudd A, Kerrigan P, Ueno K (2004) What will it take to reduce total residential source energy use by up to 60 %. ACEEE Summer Study on Energy Efficiency in Buildings 1:293–305 Rudd A, Kerrigan P, Ueno K (2004) What will it take to reduce total residential source energy use by up to 60 %. ACEEE Summer Study on Energy Efficiency in Buildings 1:293–305
7.
Zurück zum Zitat Gamble D, Dean B, Meisegeier D, Hall J (2004) Building a path towards zero energy homes with energy efficient upgrades. ACEEE 1:95–106 Gamble D, Dean B, Meisegeier D, Hall J (2004) Building a path towards zero energy homes with energy efficient upgrades. ACEEE 1:95–106
8.
Zurück zum Zitat Holton JK (2002) Base loads (lighting, appliances, DHW) and the high performance house. ASHRAE Trans 108 (Part 1):232–242MathSciNet Holton JK (2002) Base loads (lighting, appliances, DHW) and the high performance house. ASHRAE Trans 108 (Part 1):232–242MathSciNet
9.
Zurück zum Zitat Hamada Y, Nakamura M, Ochifuji K, Yokoyama S, Nagano K (2003) Development of a database of low energy homes around the world and analyses of their trends. Renew Energy 28:321–328CrossRef Hamada Y, Nakamura M, Ochifuji K, Yokoyama S, Nagano K (2003) Development of a database of low energy homes around the world and analyses of their trends. Renew Energy 28:321–328CrossRef
10.
Zurück zum Zitat Demirbilek FN, Yalciner UG, Inanici MN, Ecevit A, Demirbilek OS (2000) Energy conscious dwelling design for Ankara. Build Environ 35:33–40CrossRef Demirbilek FN, Yalciner UG, Inanici MN, Ecevit A, Demirbilek OS (2000) Energy conscious dwelling design for Ankara. Build Environ 35:33–40CrossRef
11.
Zurück zum Zitat Florides GA (2002) Measures used to lower building energy consumption and their cost effectiveness. Appl Energy 73:299–328CrossRef Florides GA (2002) Measures used to lower building energy consumption and their cost effectiveness. Appl Energy 73:299–328CrossRef
12.
Zurück zum Zitat Kharseh M, Altorkmany L (2012) How global warming and building envelope will change buildings energy use in central Europe. Appl Energy 97:999–1004CrossRef Kharseh M, Altorkmany L (2012) How global warming and building envelope will change buildings energy use in central Europe. Appl Energy 97:999–1004CrossRef
13.
Zurück zum Zitat Lund JW, Freeston DH, Boyd TL (2010) Direct utilization of geothermal energy 2010 worldwide review. World Geotherm Congress 2010:1–23 Lund JW, Freeston DH, Boyd TL (2010) Direct utilization of geothermal energy 2010 worldwide review. World Geotherm Congress 2010:1–23
14.
Zurück zum Zitat L’Ecuyer M (1993) The potential of advanced residential space conditioning technologies for reducing pollution and saving consumers money, Report of the US Environmental Protection Agency. EPA 430-R-93-004 L’Ecuyer M (1993) The potential of advanced residential space conditioning technologies for reducing pollution and saving consumers money, Report of the US Environmental Protection Agency. EPA 430-R-93-004
15.
Zurück zum Zitat Gaterell MR (2005) The impact of climate change uncertainties on the performance of energy efficiency measures applied to dwellings. Energy Build 37:982–995CrossRef Gaterell MR (2005) The impact of climate change uncertainties on the performance of energy efficiency measures applied to dwellings. Energy Build 37:982–995CrossRef
16.
Zurück zum Zitat Harvey LDD (2009) Reducing energy use in the buildings sector: measures, costs, and examples. Energy Efficiency 2:139–163CrossRef Harvey LDD (2009) Reducing energy use in the buildings sector: measures, costs, and examples. Energy Efficiency 2:139–163CrossRef
17.
Zurück zum Zitat Huang J, Hanford J, Yang F (1999) Residential heating and cooling loads component analysis. LBNL-44636 Huang J, Hanford J, Yang F (1999) Residential heating and cooling loads component analysis. LBNL-44636
18.
Zurück zum Zitat Kuznik F (2008) Optimization of a phase change material wallboard for building use. Appl Therm Eng 28:1291–1298CrossRef Kuznik F (2008) Optimization of a phase change material wallboard for building use. Appl Therm Eng 28:1291–1298CrossRef
19.
Zurück zum Zitat Blomberg T, Claesson J, Eskilson P, Hellström G, Sanner B (2000) Earth energy designer. Blocon, 2.0 Blomberg T, Claesson J, Eskilson P, Hellström G, Sanner B (2000) Earth energy designer. Blocon, 2.0
20.
Zurück zum Zitat METEONORM (2004) Global meteorological database for engineers, planners and education. Meteotest Genossencschaft, V7.0.22.8 METEONORM (2004) Global meteorological database for engineers, planners and education. Meteotest Genossencschaft, V7.0.22.8
21.
Zurück zum Zitat Papakostas K, Mavromatisb T, Kyriakisa N (2010) Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece. Renew Energy 35:1376–1379CrossRef Papakostas K, Mavromatisb T, Kyriakisa N (2010) Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece. Renew Energy 35:1376–1379CrossRef
22.
Zurück zum Zitat Durmayaz A, Kadioglu M, Sen Z (2000) An application of the degree-hours method to estimate the residential heating energy requirement and fuel consumption in Istanbul. Energy 25:1245–1256CrossRef Durmayaz A, Kadioglu M, Sen Z (2000) An application of the degree-hours method to estimate the residential heating energy requirement and fuel consumption in Istanbul. Energy 25:1245–1256CrossRef
23.
Zurück zum Zitat Guttman NB, Lehman RL (1992) Estimation of daily degree-hours. J Appl Meteorol 31:797–810CrossRef Guttman NB, Lehman RL (1992) Estimation of daily degree-hours. J Appl Meteorol 31:797–810CrossRef
24.
Zurück zum Zitat Kadioglu M, Sen Z (1999) Degree-day formulations and application in Turkey. J Appl Meteorol 38:837–846CrossRef Kadioglu M, Sen Z (1999) Degree-day formulations and application in Turkey. J Appl Meteorol 38:837–846CrossRef
25.
Zurück zum Zitat Christenson M, Manz H, Gyalistras D. (2006) Climate warming impact on degree-days and building energy demand in Switzerland. Energy Convers Manage 47:671–686CrossRef Christenson M, Manz H, Gyalistras D. (2006) Climate warming impact on degree-days and building energy demand in Switzerland. Energy Convers Manage 47:671–686CrossRef
26.
Zurück zum Zitat Jiang F (2009) Observed trends of heating and cooling degree-days in Xinjiang Province, China. Theor Appl Climatol 97:349–360CrossRef Jiang F (2009) Observed trends of heating and cooling degree-days in Xinjiang Province, China. Theor Appl Climatol 97:349–360CrossRef
27.
Zurück zum Zitat Wong SL, Wan KKW, Li DHW, Lam JC (2010) Impact of climate change on residential building envelope cooling loads in subtropical climates. Energy Build 42:2098–2103CrossRef Wong SL, Wan KKW, Li DHW, Lam JC (2010) Impact of climate change on residential building envelope cooling loads in subtropical climates. Energy Build 42:2098–2103CrossRef
28.
Zurück zum Zitat Lam JC, Tsang CL, Li DHW, Cheung SO (2005) Residential building envelope heat gain and cooling energy requirements. Energy 30:933–951CrossRef Lam JC, Tsang CL, Li DHW, Cheung SO (2005) Residential building envelope heat gain and cooling energy requirements. Energy 30:933–951CrossRef
29.
Zurück zum Zitat Lam JC (2000) Energy analysis of commercial buildings in subtropical climates. Build Environ 35:19–26CrossRef Lam JC (2000) Energy analysis of commercial buildings in subtropical climates. Build Environ 35:19–26CrossRef
30.
Zurück zum Zitat Yik FWH, Wan KSY (2005) An evaluation of the appropriateness of using overall thermal transfer value (OTTV) to regulate envelope energy performance of air-conditioned buildings. Energy 30:41–71CrossRef Yik FWH, Wan KSY (2005) An evaluation of the appropriateness of using overall thermal transfer value (OTTV) to regulate envelope energy performance of air-conditioned buildings. Energy 30:41–71CrossRef
31.
Zurück zum Zitat Duffie JA, Beckman WA (2006) Solar engineering of thermal processes, 3 edn. Wiley, Malden Duffie JA, Beckman WA (2006) Solar engineering of thermal processes, 3 edn. Wiley, Malden
32.
Zurück zum Zitat Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234:689–696CrossRef Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234:689–696CrossRef
33.
Zurück zum Zitat Kharseh M (2014) Ground response to global warming. Submitted Kharseh M (2014) Ground response to global warming. Submitted
Metadaten
Titel
Combined Effect of Global Warming and Buildings Envelope on the Performance of Ground Source Heat Pump Systems
verfasst von
Mohamad Kharseh
Lobna Altorkmany
Mohammed Al-Khawaja
Ferri Hassani
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-07896-0_15