Skip to main content
Erschienen in: Strength of Materials 2/2022

13.06.2022

Combined FEM and DIC Techniques for the 2D Analysis of the Stress-Strain Fields and Hydrogen Diffusion Near a Blunt Crack Tip

verfasst von: Ya. Ivanyts’kyi, O. Hembara, W. Dudda, V. Boyko, S. Shtayura

Erschienen in: Strength of Materials | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A mathematical model of hydrogen diffusion in structural elements near stress concentrators has been developed and experimentally confirmed. A finite-element algorithm for solving elastic-plastic and diffusion problems in the case of arbitrary geometry of the structure has been created. The study was performed on flat hydrogenated samples with a central crack. The calculations were performed for three materials: 20, 40Kh, and 65G steels. Experimental true stress–strain diagrams were used in the calculations of the hydrostatic stress. Distributions of hydrostatic stress and hydrogen concentration on the extension of the crack line for the above three steels under tension at the moment of ultimate equilibrium and after unloading were calculated. The results of hydrostatic stress distribution for steel 20, which were obtained experimentally by digital image correlation technique at the ultimate force, are also presented. For steel 20, a comparison of the calculated hydrogen concentration with the results of experimental studies obtained at the Paton Institute of Electric Welding of the National Academy of Sciences of Ukraine by mass spectrometry after complete unloading has been made. In this case, the results correlate well with each other. The correspondence between the distribution of hydrogen concentration and hydrostatic stress near the crack tip has been established. Similar to hydrostatic stress, the maximum value of the hydrogen concentration is reached at a certain distance from the crack tip. As the hydrostatic stress increases, the amount of hydrogen in the pre-failure zone increases. The concentration of hydrogen near the crack tip in the loaded sample is 2–3 times higher than the initial one; in the unloaded sample, it is 1.5–3 times lower than in the limit-equilibrium state. Plots of hydrogen concentration near the crack tip versus on the mechanical characteristics of the material were constructed, which can be used to estimate the hydrogen concentration near sharp stress concentrators in a hydrogenated metal with a given yield stress The empirical dependence of hydrogen concentration on the mechanical characteristics of the material was established, which can be used to assess the load-bearing capacity of structural elements. An engineering method for estimating the maximum hydrogen concentration near a notch is proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Stashchuk and M. Dorosh, “Analytical evaluation of hydrogen induced stress in metal,” Int. J. Hydrogen Energ., 42, No. 9, 6394–6400 (2017).CrossRef M. Stashchuk and M. Dorosh, “Analytical evaluation of hydrogen induced stress in metal,” Int. J. Hydrogen Energ., 42, No. 9, 6394–6400 (2017).CrossRef
2.
Zurück zum Zitat T. Depovera, S. Herteléb, and K. Verbeken, “The effect of hydrostatic stress on the hydrogen induced mechanical degradation of dual phase steel: A combined experimental and numerical approach,” Eng. Fract. Mech., 106704 (2019). T. Depovera, S. Herteléb, and K. Verbeken, “The effect of hydrostatic stress on the hydrogen induced mechanical degradation of dual phase steel: A combined experimental and numerical approach,” Eng. Fract. Mech., 106704 (2019).
3.
Zurück zum Zitat V. V. Panasyuk, Ya. L. Ivanyts’kyi, O. V. Hembara, and V. M. Boiko, “Influence of the stress-strain state on the distribution of hydrogen concentration in the process zone,” Mater. Sci., 50, No. 3, 315–323 (2014). V. V. Panasyuk, Ya. L. Ivanyts’kyi, O. V. Hembara, and V. M. Boiko, “Influence of the stress-strain state on the distribution of hydrogen concentration in the process zone,” Mater. Sci., 50, No. 3, 315–323 (2014).
4.
Zurück zum Zitat J. Toribio and V. Kharin, “Evaluation of hydrogen assisted cracking: the meaning and significance of the fracture mechanics approach,” Nucl. Eng. Des., 182, 149–163 (1998).CrossRef J. Toribio and V. Kharin, “Evaluation of hydrogen assisted cracking: the meaning and significance of the fracture mechanics approach,” Nucl. Eng. Des., 182, 149–163 (1998).CrossRef
5.
Zurück zum Zitat O. E. Andreikiv and O. V. Hembara, Fracture Mechanics and Durability of Metallic Materials in Hydrogen-Containing Environments [in Ukrainian], Naukova Dumka, Kyiv (2008). O. E. Andreikiv and O. V. Hembara, Fracture Mechanics and Durability of Metallic Materials in Hydrogen-Containing Environments [in Ukrainian], Naukova Dumka, Kyiv (2008).
6.
Zurück zum Zitat P. Sofronis and R. M. McMeeking, “Numerical analysis of hydrogen transport near a blunting crack tip,” J. Mech. Phys. Solids, 37, 317–350 (1989).CrossRef P. Sofronis and R. M. McMeeking, “Numerical analysis of hydrogen transport near a blunting crack tip,” J. Mech. Phys. Solids, 37, 317–350 (1989).CrossRef
7.
Zurück zum Zitat A. H. M. Krom, R. W. J. Koers, and A. Bakkerr, “Hydrogen transport near a blunting crack tip,” J. Mech. Phys. Solids, 47, 971–992 (1999).CrossRef A. H. M. Krom, R. W. J. Koers, and A. Bakkerr, “Hydrogen transport near a blunting crack tip,” J. Mech. Phys. Solids, 47, 971–992 (1999).CrossRef
8.
Zurück zum Zitat H. Kanayama, T. Shingoh, S. Ndong-Mefane, et al., “Numerical analysis of hydrogen diffusion problems using the finite element method,” J. Theor. Appl. Mech. Japan, 56, 389–400 (2008). H. Kanayama, T. Shingoh, S. Ndong-Mefane, et al., “Numerical analysis of hydrogen diffusion problems using the finite element method,” J. Theor. Appl. Mech. Japan, 56, 389–400 (2008).
9.
Zurück zum Zitat R. Miresmaeili, M. Ogino, R. Shioya, et al., “Finite element analysis of the stress and deformation fields around the blunting crack tip,” Memoirs of the Faculty of Engineering (Kyushu University), 68, 151–161 (2008). R. Miresmaeili, M. Ogino, R. Shioya, et al., “Finite element analysis of the stress and deformation fields around the blunting crack tip,” Memoirs of the Faculty of Engineering (Kyushu University), 68, 151–161 (2008).
10.
Zurück zum Zitat L. Liu, R. Miresmaeili, M. Ogino, and H. Kanayama, “Finite element implementation of an elastoplastic constitutive equation in the presence of hydrogen,” J. Comp. Sci. Technol., 5, 62–76 (2011).CrossRef L. Liu, R. Miresmaeili, M. Ogino, and H. Kanayama, “Finite element implementation of an elastoplastic constitutive equation in the presence of hydrogen,” J. Comp. Sci. Technol., 5, 62–76 (2011).CrossRef
11.
Zurück zum Zitat A. Taha and P. A. Sofronis, “Micromechanics approach to the study of hydrogen transport and embrittlement,” Eng. Fract. Mech., 68, 803–837 (2001).CrossRef A. Taha and P. A. Sofronis, “Micromechanics approach to the study of hydrogen transport and embrittlement,” Eng. Fract. Mech., 68, 803–837 (2001).CrossRef
12.
Zurück zum Zitat H. Kotake, R. Matsumoto, S. Taketomi, and N. Miyazaki, “Transient hydrogen diffusion analyses coupled with crack-tip plasticity under cyclic loading,” Int. J. Pres. Ves. Pip., 85, 540–549 (2008).CrossRef H. Kotake, R. Matsumoto, S. Taketomi, and N. Miyazaki, “Transient hydrogen diffusion analyses coupled with crack-tip plasticity under cyclic loading,” Int. J. Pres. Ves. Pip., 85, 540–549 (2008).CrossRef
13.
Zurück zum Zitat J. Toribio and V. Kharin, “A hydrogen diffusion model for applications in fusion nuclear technology,” Fusion Eng. Des., 51–52, 213–218 (2000).CrossRef J. Toribio and V. Kharin, “A hydrogen diffusion model for applications in fusion nuclear technology,” Fusion Eng. Des., 51–52, 213–218 (2000).CrossRef
14.
Zurück zum Zitat J. Toribio, D. Vergara, M. Lorenzo, and V. Kharin, “Two-dimensional numerical modelling of hydrogen diffusion assisted by stress and strain,” WIT Trans. Eng. Sci., 65, 131–140 (2009).CrossRef J. Toribio, D. Vergara, M. Lorenzo, and V. Kharin, “Two-dimensional numerical modelling of hydrogen diffusion assisted by stress and strain,” WIT Trans. Eng. Sci., 65, 131–140 (2009).CrossRef
15.
Zurück zum Zitat J. Toribio, V. Kharin, D. Vergara, and M. Lorenzo, “Optimization of the simulation of stress-assisted hydrogen diffusion for studies of hydrogen embrittlement of notched bars,” Mater. Sci., 46, 819–833 (2010).CrossRef J. Toribio, V. Kharin, D. Vergara, and M. Lorenzo, “Optimization of the simulation of stress-assisted hydrogen diffusion for studies of hydrogen embrittlement of notched bars,” Mater. Sci., 46, 819–833 (2010).CrossRef
16.
Zurück zum Zitat GOST 1497-84. Metals. Methods of Tension Test [in Russian], Valid since January 1, 1986. GOST 1497-84. Metals. Methods of Tension Test [in Russian], Valid since January 1, 1986.
17.
Zurück zum Zitat GOST 25.506-85. Design, Calculation and Strength Testing. Methods of Mechanical Testing of Metals. Determination of Fracture Toughness Characteristics under the Static Loading [in Russian], Valid since January 1, 1986. GOST 25.506-85. Design, Calculation and Strength Testing. Methods of Mechanical Testing of Metals. Determination of Fracture Toughness Characteristics under the Static Loading [in Russian], Valid since January 1, 1986.
18.
Zurück zum Zitat V. Panasyuk, Ya. Ivanytskyi, and O. Hembara, “Assessment of hydrogen effect on fracture resistance under complex-mode loading,” Eng. Fract. Mech., 83, 54–61 (2012).CrossRef V. Panasyuk, Ya. Ivanytskyi, and O. Hembara, “Assessment of hydrogen effect on fracture resistance under complex-mode loading,” Eng. Fract. Mech., 83, 54–61 (2012).CrossRef
19.
Zurück zum Zitat V. V. Panasyuk (Ed.), Mechanical Fracture and Strength of Materials: Reference Book [in Russian], in 4 volumes, Vol. 4: O. N. Romaniv, S. Ya. Yarema, H. M. Nykyforchyn, et al., Fatigue and Fatigue Crack Growth Resistance of Structural Materials, Naukova Dumka, Kiev (1990). V. V. Panasyuk (Ed.), Mechanical Fracture and Strength of Materials: Reference Book [in Russian], in 4 volumes, Vol. 4: O. N. Romaniv, S. Ya. Yarema, H. M. Nykyforchyn, et al., Fatigue and Fatigue Crack Growth Resistance of Structural Materials, Naukova Dumka, Kiev (1990).
20.
Zurück zum Zitat V. V. Panasyuk, Ya. L. Ivanyts’kyi, and O. P. Maksymenko, “Analysis of the elastoplastic deformation of the material in the process zone,” Mater. Sci., 40, 648–655 (2004). V. V. Panasyuk, Ya. L. Ivanyts’kyi, and O. P. Maksymenko, “Analysis of the elastoplastic deformation of the material in the process zone,” Mater. Sci., 40, 648–655 (2004).
21.
Zurück zum Zitat M. Wang, E. Akiyama, and K. Tsuzaki, “Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation,” Corros. Sci., 48, 2189–2202 (2006).CrossRef M. Wang, E. Akiyama, and K. Tsuzaki, “Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation,” Corros. Sci., 48, 2189–2202 (2006).CrossRef
22.
Zurück zum Zitat O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1: The Basis, Butterworth- Heinemann, Oxford (2000). O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1: The Basis, Butterworth- Heinemann, Oxford (2000).
23.
Zurück zum Zitat R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York (2002). R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York (2002).
24.
Zurück zum Zitat G. P. Nikishkov and S. N. Atluri, “Implementation of a generalized midpoint algorithm for integration of elastoplastic constitutive relations for von Mises hardening material,” Comput. Struct., 49, 1037–1044 (1993).CrossRef G. P. Nikishkov and S. N. Atluri, “Implementation of a generalized midpoint algorithm for integration of elastoplastic constitutive relations for von Mises hardening material,” Comput. Struct., 49, 1037–1044 (1993).CrossRef
Metadaten
Titel
Combined FEM and DIC Techniques for the 2D Analysis of the Stress-Strain Fields and Hydrogen Diffusion Near a Blunt Crack Tip
verfasst von
Ya. Ivanyts’kyi
O. Hembara
W. Dudda
V. Boyko
S. Shtayura
Publikationsdatum
13.06.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00399-y

Weitere Artikel der Ausgabe 2/2022

Strength of Materials 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.