Skip to main content
Erschienen in: Photonic Network Communications 1/2016

01.08.2016

Combined influence of third-order dispersion, intra-pulse Raman scattering, and self-steepening effect on soliton temporal shifts in telecommunications

verfasst von: Bhupeshwaran Mani, A. Jawahar, S. Radha, K. Chitra, A. Sivasubramanian

Erschienen in: Photonic Network Communications | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Here, we discuss the influence of higher-order nonlinear effects like third-order dispersion, intra-pulse Raman scattering, and self-steepening effects on 1-ps soliton pulse shift or displacement from its initial position. The temporal shifts of soliton due to these higher-order nonlinear effects were studied numerically by “Method of Moments” to realize the contribution of these HOE on shifts. Further, we note the influence of positive and negative TOD on the shift produced by the combined HOE. The soliton shift is then analyzed in 160-Gbps telecommunication system implemented with conventional single-mode fiber (C-SMF) for the length 10 and 20 km. The disturbances between the adjacent soliton pulses in noted with different 16-bit data sequences, and the deterioration of system is characterized in terms of quality factor. It could be seen for an unchirped soliton of pulsewidth \(T_{\mathrm{o}}\sim 1\hbox {ps}\), the shift is highly influenced due to intra-pulse Raman scattering, while the shifting due to third-order dispersion can be treated negligibly small. Moreover, negative TOD was expected to inhibit the soliton temporal shift such that it would reduce collision with adjacent pulses; it results in more resonant radiation resulting in pulse decaying. Although negative TOD helps in good reception of pulses for 10 km, it fails to perform in system with 20 km C-SMF, where the dispersive components break more and more while traveling along the length of fiber.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nakazawa, M.: Soliton transmission in telecommunication networks. IEEE Commun. Mag. 32, 34–41 (1994)CrossRef Nakazawa, M.: Soliton transmission in telecommunication networks. IEEE Commun. Mag. 32, 34–41 (1994)CrossRef
2.
Zurück zum Zitat Zhang, H.-Q., Tian, B., Xing, L., Li, H., Meng, X.-H.: Soliton interaction in the coupled mixed derivative nonlinear Schrodinger equations. Phys. Lett. A 373, 4315–4321 (2009)MathSciNetCrossRefMATH Zhang, H.-Q., Tian, B., Xing, L., Li, H., Meng, X.-H.: Soliton interaction in the coupled mixed derivative nonlinear Schrodinger equations. Phys. Lett. A 373, 4315–4321 (2009)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Sarma, A.K., Kumar, A.: Perturbative effects on ultra-short soliton self-switching. Pramana 69, 575–587 (2007)CrossRef Sarma, A.K., Kumar, A.: Perturbative effects on ultra-short soliton self-switching. Pramana 69, 575–587 (2007)CrossRef
4.
Zurück zum Zitat Ranka, J.K., Windeler, R.S., Stentz, A.J.: Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000)CrossRef Ranka, J.K., Windeler, R.S., Stentz, A.J.: Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000)CrossRef
5.
Zurück zum Zitat Wang, J., Li, L., Li, Z., Zhou, G., Mihalache, D., Malomed, B.A.: Generation, compression and propagation of pulse trains under higher-order effects. Opt. Commun. 263, 328–336 (2006)CrossRef Wang, J., Li, L., Li, Z., Zhou, G., Mihalache, D., Malomed, B.A.: Generation, compression and propagation of pulse trains under higher-order effects. Opt. Commun. 263, 328–336 (2006)CrossRef
6.
Zurück zum Zitat Elgin, J.N., Brabec, T., Kelly, S.M.J.: A perturbative theory of soliton propagation in the presence of third-order dispersion. Opt. Commun. 114, 321–328 (1995)CrossRef Elgin, J.N., Brabec, T., Kelly, S.M.J.: A perturbative theory of soliton propagation in the presence of third-order dispersion. Opt. Commun. 114, 321–328 (1995)CrossRef
7.
Zurück zum Zitat Mitschke, F.M., Mollenauer, L.F.: Discovery of the soliton self-frequency shift. Opt. Lett 11, 659–661 (1986)CrossRef Mitschke, F.M., Mollenauer, L.F.: Discovery of the soliton self-frequency shift. Opt. Lett 11, 659–661 (1986)CrossRef
8.
Zurück zum Zitat Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of optical pulses in long waveguide. Phys. Rev. 27, 1393–1398 (1983)CrossRef Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of optical pulses in long waveguide. Phys. Rev. 27, 1393–1398 (1983)CrossRef
9.
Zurück zum Zitat Yupapin, P.P., Jalil, M.A., Amiri, I.S., Naim, I., Ali, J.: New communication bands generated by using a soliton pulse within a resonator system. Circuits Syst. 1, 71–75 (2010)CrossRef Yupapin, P.P., Jalil, M.A., Amiri, I.S., Naim, I., Ali, J.: New communication bands generated by using a soliton pulse within a resonator system. Circuits Syst. 1, 71–75 (2010)CrossRef
10.
Zurück zum Zitat Husakou, A.V., Herrmann, J.: Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87, 203901 (2001)CrossRef Husakou, A.V., Herrmann, J.: Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87, 203901 (2001)CrossRef
11.
Zurück zum Zitat Sakamaki, K., Naka, M., Naganuma, M., Izutsu, M.: Soliton induced supercontinuum generation in photonic crystal fiber. IEEE J. Sel. Top. Quant. Elect. 10, 876–884 (2004)CrossRef Sakamaki, K., Naka, M., Naganuma, M., Izutsu, M.: Soliton induced supercontinuum generation in photonic crystal fiber. IEEE J. Sel. Top. Quant. Elect. 10, 876–884 (2004)CrossRef
12.
Zurück zum Zitat Dudley, J.M., Provino, L., Grossard, N., Maillotte, H., Windeler, R.S., Eggleton, B.J., Coen, S.: Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping”. J. Opt. Soc. Am. B 19, 765–771 (2002)CrossRef Dudley, J.M., Provino, L., Grossard, N., Maillotte, H., Windeler, R.S., Eggleton, B.J., Coen, S.: Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping”. J. Opt. Soc. Am. B 19, 765–771 (2002)CrossRef
13.
Zurück zum Zitat Chan, M.-C., Chia, S.-H., Liu, T.-M., Tsai, T.-H., Ho, M.-C., Ivanov, A.A., Zheltikov, A.M., Liu, J.-Y., Liu, H.-L., Sun, C.-K.: 1.2- to 2.2\(\mu \)m tunable Raman soliton source based on a Cr: Forsterite Laser and a photonic-crystal fiber. IEEE Photon. Technol. Lett. 20, 900–902 (2008)CrossRef Chan, M.-C., Chia, S.-H., Liu, T.-M., Tsai, T.-H., Ho, M.-C., Ivanov, A.A., Zheltikov, A.M., Liu, J.-Y., Liu, H.-L., Sun, C.-K.: 1.2- to 2.2\(\mu \)m tunable Raman soliton source based on a Cr: Forsterite Laser and a photonic-crystal fiber. IEEE Photon. Technol. Lett. 20, 900–902 (2008)CrossRef
14.
Zurück zum Zitat Liu, W.-J., Leia, M.: All-optical switches using solitons within nonlinear fibers. J. Electromagn. Waves Appl. 27(18), 2288–2297 (2013)CrossRef Liu, W.-J., Leia, M.: All-optical switches using solitons within nonlinear fibers. J. Electromagn. Waves Appl. 27(18), 2288–2297 (2013)CrossRef
15.
Zurück zum Zitat Xu, M., Li, Y., Zhang, T., Luo, J., Ji, J., Yang, S.: The analysis of all-optical logic gates based with tunable femtosecond soliton self-frequency shift. Opt. Express 22, 8349–8366 (2014)CrossRef Xu, M., Li, Y., Zhang, T., Luo, J., Ji, J., Yang, S.: The analysis of all-optical logic gates based with tunable femtosecond soliton self-frequency shift. Opt. Express 22, 8349–8366 (2014)CrossRef
16.
Zurück zum Zitat Zhao, W., Bourkoff, E.: Femtosecond pulse-propagation in optical fibers: higher-order effects. IEEE J. Quantum Electron. 24, 365–372 (1987)CrossRef Zhao, W., Bourkoff, E.: Femtosecond pulse-propagation in optical fibers: higher-order effects. IEEE J. Quantum Electron. 24, 365–372 (1987)CrossRef
17.
Zurück zum Zitat Li, S., Li, L., Li, Z., Zhou, G.: Properties of soliton solutions on a cw background in optical fibers with higher-order effects. J. Opt. Soc. Am. B 21, 2089–2094 (2004)MathSciNetCrossRef Li, S., Li, L., Li, Z., Zhou, G.: Properties of soliton solutions on a cw background in optical fibers with higher-order effects. J. Opt. Soc. Am. B 21, 2089–2094 (2004)MathSciNetCrossRef
18.
Zurück zum Zitat Hermann, A.H., William, S., Wong, W.S.: Solitons in optical communication. Rev. Mod. Phys. 68(2), 423–444 (1996)CrossRef Hermann, A.H., William, S., Wong, W.S.: Solitons in optical communication. Rev. Mod. Phys. 68(2), 423–444 (1996)CrossRef
19.
Zurück zum Zitat Nakazawa, M., Kubota, H., Suzuki, K., Yamada, E., Sahara, A.: Recent progress in soliton transmission technology. Chaos 10, 486–514 (2000)CrossRef Nakazawa, M., Kubota, H., Suzuki, K., Yamada, E., Sahara, A.: Recent progress in soliton transmission technology. Chaos 10, 486–514 (2000)CrossRef
20.
Zurück zum Zitat Wai, P.K.A., Menyuk, C.R., Chen, H.H., Lee, Y.C.: Soliton at zero group dispersion of a single model fiber. Opt. Lett. 12(8), 628–630 (1987)CrossRef Wai, P.K.A., Menyuk, C.R., Chen, H.H., Lee, Y.C.: Soliton at zero group dispersion of a single model fiber. Opt. Lett. 12(8), 628–630 (1987)CrossRef
21.
Zurück zum Zitat Noylender, O., Abraham, D., Eisenstein, G.: Propagation of short pulses with fluctuating peak power in the zero-dispersion wavelength region of single-mode fibers. J. Opt. Soc. Am. 14, 2904–2909 (1997)CrossRef Noylender, O., Abraham, D., Eisenstein, G.: Propagation of short pulses with fluctuating peak power in the zero-dispersion wavelength region of single-mode fibers. J. Opt. Soc. Am. 14, 2904–2909 (1997)CrossRef
22.
Zurück zum Zitat Kivshar, Y.S.: Nonlinear dynamics near the zero dispersion point in optical fibers. Phys. Rev. A 43(3), 1677–1679 (1991)CrossRef Kivshar, Y.S.: Nonlinear dynamics near the zero dispersion point in optical fibers. Phys. Rev. A 43(3), 1677–1679 (1991)CrossRef
23.
Zurück zum Zitat WeiPing, Z.: Soliton propagation near zero-dispersion wavelength in birefringence fiber. Commun. Theor. Phys. 33, 157–160 (2000)CrossRef WeiPing, Z.: Soliton propagation near zero-dispersion wavelength in birefringence fiber. Commun. Theor. Phys. 33, 157–160 (2000)CrossRef
24.
Zurück zum Zitat Tsoy, E.N., de Sterke, C.M.: Dynamics of ultrashort pulses near zero dispersion wavelength. J. Opt. Soc. Am.B 23(11), 2425–2433 (2006)MathSciNetCrossRef Tsoy, E.N., de Sterke, C.M.: Dynamics of ultrashort pulses near zero dispersion wavelength. J. Opt. Soc. Am.B 23(11), 2425–2433 (2006)MathSciNetCrossRef
25.
Zurück zum Zitat Biancalana, F., Skryabin, D.V., Yulin, A.V.: Theory of the soliton self-frequency shift compensation by the resonant radiation in PCF. Phys. Rev. E 70, 016615 (2004)CrossRef Biancalana, F., Skryabin, D.V., Yulin, A.V.: Theory of the soliton self-frequency shift compensation by the resonant radiation in PCF. Phys. Rev. E 70, 016615 (2004)CrossRef
26.
Zurück zum Zitat Tsigaridas, G., Polyzos, I., Giannetas, V., Persephonis, P.: Compensation of nonlinear absorption in a soliton communication system. Chaos Solitons Fractals 35, 151–160 (2008)CrossRef Tsigaridas, G., Polyzos, I., Giannetas, V., Persephonis, P.: Compensation of nonlinear absorption in a soliton communication system. Chaos Solitons Fractals 35, 151–160 (2008)CrossRef
27.
Zurück zum Zitat Essiambre, R.-J., Agarwal, G.P.: Timing jitter analysis for optical communication systems using ultrashort solitons and dispersion-decreasing fibers. Opt. Commun. 131, 274–278 (1996)CrossRef Essiambre, R.-J., Agarwal, G.P.: Timing jitter analysis for optical communication systems using ultrashort solitons and dispersion-decreasing fibers. Opt. Commun. 131, 274–278 (1996)CrossRef
28.
Zurück zum Zitat Essiambre, R.-J., Agarwal, G.P.: Timing jitter of ultrashort solitons in high-speed communication systems. I. General formulation and application to dispersion-decreasing fibers. J. Opt. Soc. Am. B 14, 314–322 (1997)CrossRef Essiambre, R.-J., Agarwal, G.P.: Timing jitter of ultrashort solitons in high-speed communication systems. I. General formulation and application to dispersion-decreasing fibers. J. Opt. Soc. Am. B 14, 314–322 (1997)CrossRef
29.
Zurück zum Zitat Essiambre, R.-J., Agarwal, G.P.: Timing jitter of ultrashort solitons in high-speed communication systems. II. Control of jitter by periodic optical phase conjugation. J. Opt. Soc. Am. B 14, 323–330 (1997)CrossRef Essiambre, R.-J., Agarwal, G.P.: Timing jitter of ultrashort solitons in high-speed communication systems. II. Control of jitter by periodic optical phase conjugation. J. Opt. Soc. Am. B 14, 323–330 (1997)CrossRef
30.
Zurück zum Zitat Santhanam, J., Agrawal, G.P.: Raman-induced timing jitter in dispersion-managed optical communication systems. IEEE J. Sel. Top. Quantum Electron. 8, 632–639 (2002)CrossRef Santhanam, J., Agrawal, G.P.: Raman-induced timing jitter in dispersion-managed optical communication systems. IEEE J. Sel. Top. Quantum Electron. 8, 632–639 (2002)CrossRef
31.
Zurück zum Zitat Sofia, C.V.L., Mário, F.S.F.: Soliton propagation in the presence of intrapulse Raman scattering and nonlinear gain. Optics Communications 251, 415–422 (2005)CrossRef Sofia, C.V.L., Mário, F.S.F.: Soliton propagation in the presence of intrapulse Raman scattering and nonlinear gain. Optics Communications 251, 415–422 (2005)CrossRef
32.
Zurück zum Zitat Sofia, C.V.L., Mário, F.S.F.: Stable soliton propagation with self-frequency shift. Math. Comput. Simul. 74, 379–387 (2007)MathSciNetCrossRefMATH Sofia, C.V.L., Mário, F.S.F.: Stable soliton propagation with self-frequency shift. Math. Comput. Simul. 74, 379–387 (2007)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Hitender, K., Fakir, C.: Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with self-steepening and self-frequency shift effects. Opt. Laser Technol. 54, 265–273 (2013)CrossRef Hitender, K., Fakir, C.: Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with self-steepening and self-frequency shift effects. Opt. Laser Technol. 54, 265–273 (2013)CrossRef
34.
Zurück zum Zitat Huang, J., Lin, J., Lan, C., Wang, D.: The Raman non-gain and self-steepening effects in Raman fiber amplifiers. Optik 125, 772–776 (2014)CrossRef Huang, J., Lin, J., Lan, C., Wang, D.: The Raman non-gain and self-steepening effects in Raman fiber amplifiers. Optik 125, 772–776 (2014)CrossRef
35.
Zurück zum Zitat Govindaraji, A., Mahalingam, A., Uthayakumar, A.: Femtosecond pulse switching in a fiber coupler with third order dispersion and self-steepening effects. Optik 125, 4135–4139 (2014)CrossRef Govindaraji, A., Mahalingam, A., Uthayakumar, A.: Femtosecond pulse switching in a fiber coupler with third order dispersion and self-steepening effects. Optik 125, 4135–4139 (2014)CrossRef
36.
Zurück zum Zitat Dinda, T.P., Labruyere, A., Nakkeeran, K.: Theory of Raman effect on solitons in optical fibre systems: impact and control processes for high-speed long-distance transmission lines. Opt. Commun. 234, 137–151 (2004)CrossRef Dinda, T.P., Labruyere, A., Nakkeeran, K.: Theory of Raman effect on solitons in optical fibre systems: impact and control processes for high-speed long-distance transmission lines. Opt. Commun. 234, 137–151 (2004)CrossRef
37.
Zurück zum Zitat Oda, S., Maruta, A.: All optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self phase modulation. Opt. Express 14, 7895–7902 (2006)CrossRef Oda, S., Maruta, A.: All optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self phase modulation. Opt. Express 14, 7895–7902 (2006)CrossRef
38.
Zurück zum Zitat Zhu, B., Yang, X.L.: The influence of higher-order effects on the transmission performances of the ultra-short soliton pulses and its suppression method. Sci. China 53, 182–190 (2010)MathSciNetCrossRef Zhu, B., Yang, X.L.: The influence of higher-order effects on the transmission performances of the ultra-short soliton pulses and its suppression method. Sci. China 53, 182–190 (2010)MathSciNetCrossRef
39.
Zurück zum Zitat Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (2008)MATH Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (2008)MATH
40.
Zurück zum Zitat Santhanam, J., Agrawal, G.P.: Raman-induced spectral shifts in optical fibers: general theory based on the moment method. Opt. Commun. 222, 413–420 (2003)CrossRef Santhanam, J., Agrawal, G.P.: Raman-induced spectral shifts in optical fibers: general theory based on the moment method. Opt. Commun. 222, 413–420 (2003)CrossRef
41.
Zurück zum Zitat Fazcas, A., Sterian, P.: Second and third order dispersion effects analyzed by the split-step Fourier method for soliton propagation in optical fibers. J. Optoelectron. Adv. Mater. 14(3–4), 376–382 (2012) Fazcas, A., Sterian, P.: Second and third order dispersion effects analyzed by the split-step Fourier method for soliton propagation in optical fibers. J. Optoelectron. Adv. Mater. 14(3–4), 376–382 (2012)
42.
Zurück zum Zitat Pal, D., Golam Ali, S.K., Talukdar, B.: Evolution of optical pulses in the presence of third-order dispersion. Pramana 72, 939–950 (2009)CrossRef Pal, D., Golam Ali, S.K., Talukdar, B.: Evolution of optical pulses in the presence of third-order dispersion. Pramana 72, 939–950 (2009)CrossRef
43.
Zurück zum Zitat Zhuravlev, V.M., Zolotovskii, I.O., Korobko, D.A., Fotiadi, A.A.: Dynamics of optical pulses in waveguides with a large self-steepening parameter. Quantum Electron. 43(11), 1029–1036 (2013)CrossRef Zhuravlev, V.M., Zolotovskii, I.O., Korobko, D.A., Fotiadi, A.A.: Dynamics of optical pulses in waveguides with a large self-steepening parameter. Quantum Electron. 43(11), 1029–1036 (2013)CrossRef
44.
Zurück zum Zitat Lee, J.H., van Howe, J., Xu, C., Liu, X.: Soliton self-frequency shift: experimental demonstrations and applications. IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008)CrossRef Lee, J.H., van Howe, J., Xu, C., Liu, X.: Soliton self-frequency shift: experimental demonstrations and applications. IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008)CrossRef
45.
Zurück zum Zitat Mani, B., Chitra, K., Sivasubramanian, A.: Study on fundamental and higher order soliton with and without third-order dispersion near zero dispersion point of single mode fiber. J. Nonlinear Opt. Phys. Mater. 23, 1450028-1–1450028-28 (2014)CrossRef Mani, B., Chitra, K., Sivasubramanian, A.: Study on fundamental and higher order soliton with and without third-order dispersion near zero dispersion point of single mode fiber. J. Nonlinear Opt. Phys. Mater. 23, 1450028-1–1450028-28 (2014)CrossRef
46.
Zurück zum Zitat Stgeman, I.G., Segev, M.: Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999)CrossRef Stgeman, I.G., Segev, M.: Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999)CrossRef
47.
Zurück zum Zitat Roy, S., Bhadra, S.K., Saitoh, K., Koshiba, M., Agrawal, G.P.: Dynamics of Raman soliton during supercontinuum generation near the zerodispersion wavelength of optical fibers. Opt. Express 19(11), 10443–10455 (2011)CrossRef Roy, S., Bhadra, S.K., Saitoh, K., Koshiba, M., Agrawal, G.P.: Dynamics of Raman soliton during supercontinuum generation near the zerodispersion wavelength of optical fibers. Opt. Express 19(11), 10443–10455 (2011)CrossRef
48.
Zurück zum Zitat Li, S.N., Li, H.P., Liao, J.K., Tang, X.G., Lu, R.G., Liu, Y.: Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber. Optik 124, 2281–2284 (2013)CrossRef Li, S.N., Li, H.P., Liao, J.K., Tang, X.G., Lu, R.G., Liu, Y.: Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber. Optik 124, 2281–2284 (2013)CrossRef
49.
Zurück zum Zitat Chan, K.-T., Cao, W.-H.: Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering. Opt. Commun. 184, 463–474 (2000)CrossRef Chan, K.-T., Cao, W.-H.: Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering. Opt. Commun. 184, 463–474 (2000)CrossRef
Metadaten
Titel
Combined influence of third-order dispersion, intra-pulse Raman scattering, and self-steepening effect on soliton temporal shifts in telecommunications
verfasst von
Bhupeshwaran Mani
A. Jawahar
S. Radha
K. Chitra
A. Sivasubramanian
Publikationsdatum
01.08.2016
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 1/2016
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-015-0577-0

Weitere Artikel der Ausgabe 1/2016

Photonic Network Communications 1/2016 Zur Ausgabe

Neuer Inhalt