Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2017 | OriginalPaper | Buchkapitel

Combining Contrast Invariant L1 Data Fidelities with Nonlinear Spectral Image Decomposition

verfasst von : Leonie Zeune, Stephan A. van Gils, Leon W. M. M. Terstappen, Christoph Brune

Erschienen in: Scale Space and Variational Methods in Computer Vision

Verlag: Springer International Publishing

Abstract

This paper focuses on multi-scale approaches for variational methods and corresponding gradient flows. Recently, for convex regularization functionals such as total variation, new theory and algorithms for nonlinear eigenvalue problems via nonlinear spectral decompositions have been developed. Those methods open new directions for advanced image filtering. However, for an effective use in image segmentation and shape decomposition, a clear interpretation of the spectral response regarding size and intensity scales is needed but lacking in current approaches. In this context, \(L^1\) data fidelities are particularly helpful due to their interesting multi-scale properties such as contrast invariance. Hence, the novelty of this work is the combination of \(L^1\)-based multi-scale methods with nonlinear spectral decompositions. We compare \(L^1\) with \(L^2\) scale-space methods in view of spectral image representation and decomposition. We show that the contrast invariant multi-scale behavior of \(L^1-TV\) promotes sparsity in the spectral response providing more informative decompositions. We provide a numerical method and analyze synthetic and biomedical images at which decomposition leads to improved segmentation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005) MathSciNetCrossRefMATH Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005) MathSciNetCrossRefMATH
2.
Zurück zum Zitat Brune, C., Sawatzky, A., Burger, M.: Primal and dual Bregman methods with application to optical nanoscopy. Int. J. Comput. Vis. 92(2), 211–229 (2011) MathSciNetCrossRefMATH Brune, C., Sawatzky, A., Burger, M.: Primal and dual Bregman methods with application to optical nanoscopy. Int. J. Comput. Vis. 92(2), 211–229 (2011) MathSciNetCrossRefMATH
4.
Zurück zum Zitat Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7(4), 1937–1961 (2014) MathSciNetCrossRefMATH Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7(4), 1937–1961 (2014) MathSciNetCrossRefMATH
5.
Zurück zum Zitat Burger, M., Eckardt, L., Gilboa, G., Moeller, M.: Spectral representations of one-homogeneous functionals. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 16–27. Springer, Cham (2015). doi: 10.​1007/​978-3-319-18461-6_​2 Burger, M., Eckardt, L., Gilboa, G., Moeller, M.: Spectral representations of one-homogeneous functionals. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 16–27. Springer, Cham (2015). doi: 10.​1007/​978-3-319-18461-6_​2
6.
Zurück zum Zitat Burger, M., Gilboa, G., Moeller, M., Eckardt, L., Cremers, D.: Spectral decompositions using one-homogeneous functionals. SIAM J. Imaging Sci. 9(3), 1374–1408 (2016) MathSciNetCrossRefMATH Burger, M., Gilboa, G., Moeller, M., Eckardt, L., Cremers, D.: Spectral decompositions using one-homogeneous functionals. SIAM J. Imaging Sci. 9(3), 1374–1408 (2016) MathSciNetCrossRefMATH
7.
Zurück zum Zitat Gilboa, G., Moeller, M., Burger, M.: Nonlinear spectral analysis via one-homogeneous functionals: overview and future prospects. J. Math. Imaging Vis. 56(2), 300–319 (2016) MathSciNetCrossRefMATH Gilboa, G., Moeller, M., Burger, M.: Nonlinear spectral analysis via one-homogeneous functionals: overview and future prospects. J. Math. Imaging Vis. 56(2), 300–319 (2016) MathSciNetCrossRefMATH
8.
Zurück zum Zitat Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (2002) MathSciNetCrossRefMATH Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (2002) MathSciNetCrossRefMATH
9.
Zurück zum Zitat Chan, T.F., Esedoglu, S.: Aspects of total variation regularized \(L^1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005) MathSciNetCrossRefMATH Chan, T.F., Esedoglu, S.: Aspects of total variation regularized \(L^1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005) MathSciNetCrossRefMATH
10.
Zurück zum Zitat Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition-modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006) CrossRefMATH Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition-modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006) CrossRefMATH
11.
Zurück zum Zitat Yin, W., Goldfarb, D., Osher, S.: The total variation regularized \(L^1\) model for multiscale decomposition. Multiscale Model. Simul. 6(1), 190–211 (2007) MathSciNetCrossRefMATH Yin, W., Goldfarb, D., Osher, S.: The total variation regularized \(L^1\) model for multiscale decomposition. Multiscale Model. Simul. 6(1), 190–211 (2007) MathSciNetCrossRefMATH
12.
Zurück zum Zitat Dong, Y., Hintermüller, M., Neri, M.: An efficient primal-dual method for \(L^1\)TV image restoration. SIAM J. Imaging Sci. 2(4), 1168–1189 (2009) MathSciNetCrossRefMATH Dong, Y., Hintermüller, M., Neri, M.: An efficient primal-dual method for \(L^1\)TV image restoration. SIAM J. Imaging Sci. 2(4), 1168–1189 (2009) MathSciNetCrossRefMATH
13.
Zurück zum Zitat Wu, C., Zhang, J., Tai, X.C.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Probl. Imaging 5(1), 237–261 (2011) MathSciNetCrossRefMATH Wu, C., Zhang, J., Tai, X.C.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Probl. Imaging 5(1), 237–261 (2011) MathSciNetCrossRefMATH
14.
Zurück zum Zitat Yuan, J., Shi, J., Tai, X.C.: A convex and exact approach to discrete constrained TV- \(L^1\) image approximation. East Asian J. Appl. Math. 1(02), 172–186 (2011) MathSciNetCrossRefMATH Yuan, J., Shi, J., Tai, X.C.: A convex and exact approach to discrete constrained TV- \(L^1\) image approximation. East Asian J. Appl. Math. 1(02), 172–186 (2011) MathSciNetCrossRefMATH
15.
Zurück zum Zitat Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV- L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). doi: 10.​1007/​978-3-540-74936-3_​22 CrossRef Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV- L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). doi: 10.​1007/​978-3-540-74936-3_​22 CrossRef
17.
Zurück zum Zitat Duval, V., Aujol, J.F., Gousseau, Y.: The TVL1 model: a geometric point of view. Multiscale Model. Simul. 8(1), 154–189 (2009) MathSciNetCrossRefMATH Duval, V., Aujol, J.F., Gousseau, Y.: The TVL1 model: a geometric point of view. Multiscale Model. Simul. 8(1), 154–189 (2009) MathSciNetCrossRefMATH
18.
Zurück zum Zitat Zeune, L., van Dalum, G., Terstappen, L.W., van Gils, S.A., Brune, C.: Multiscale segmentation via Bregman distances and nonlinear spectral analysis. SIAM J. Imaging Sci. 10(1), 111–146 (2017) MathSciNetCrossRef Zeune, L., van Dalum, G., Terstappen, L.W., van Gils, S.A., Brune, C.: Multiscale segmentation via Bregman distances and nonlinear spectral analysis. SIAM J. Imaging Sci. 10(1), 111–146 (2017) MathSciNetCrossRef
19.
20.
Zurück zum Zitat Caselles, V., Chambolle, A., Novaga, M.: Uniqueness of the Cheeger set of a convex body. Pac. J. Math. 232(1), 77–90 (2007) MathSciNetCrossRefMATH Caselles, V., Chambolle, A., Novaga, M.: Uniqueness of the Cheeger set of a convex body. Pac. J. Math. 232(1), 77–90 (2007) MathSciNetCrossRefMATH
21.
Zurück zum Zitat Chambolle, A., Duval, V., Peyré, G., Poon, C.: Geometric properties of solutions to the total variation denoising problem. arXiv preprint arXiv:​1602.​00087 (2016) Chambolle, A., Duval, V., Peyré, G., Poon, C.: Geometric properties of solutions to the total variation denoising problem. arXiv preprint arXiv:​1602.​00087 (2016)
22.
Zurück zum Zitat Darbon, J.: Total variation minimization with \(L^1\) data fidelity as a contrast invariant filter. In: 4th International Symposium on Image and Signal Processing and Analysis (ISpPA 2005), pp. 221–226 (2005) Darbon, J.: Total variation minimization with \(L^1\) data fidelity as a contrast invariant filter. In: 4th International Symposium on Image and Signal Processing and Analysis (ISpPA 2005), pp. 221–226 (2005)
23.
Zurück zum Zitat Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19(6), S165 (2003) MathSciNetCrossRefMATH Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19(6), S165 (2003) MathSciNetCrossRefMATH
24.
Zurück zum Zitat Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011) MathSciNetCrossRefMATH Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011) MathSciNetCrossRefMATH
25.
Zurück zum Zitat Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000) CrossRef Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000) CrossRef
Metadaten
Titel
Combining Contrast Invariant L1 Data Fidelities with Nonlinear Spectral Image Decomposition
verfasst von
Leonie Zeune
Stephan A. van Gils
Leon W. M. M. Terstappen
Christoph Brune
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-58771-4_7