Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

03.07.2019 | Original Article

Combining functional near-infrared spectroscopy and EEG measurements for the diagnosis of attention-deficit hyperactivity disorder

Zeitschrift:
Neural Computing and Applications
Autoren:
Ayşegül Güven, Miray Altınkaynak, Nazan Dolu, Meltem İzzetoğlu, Ferhat Pektaş, Sevgi Özmen, Esra Demirci, Turgay Batbat
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Recently multimodal neuroimaging which combines signals from different brain modalities has started to be considered as a potential to improve the accuracy of diagnosis. The current study aimed to explore a new method for discriminating attention-deficit hyperactivity disorder (ADHD) patients and control group by means of simultaneous measurement of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Twenty-three pre-medicated combined type ADHD children and 21 healthy children were included in the study. Nonlinear brain dynamics of subjects were obtained from EEG signal using Higuchi fractal dimensions and Lempel–Ziv complexity, latency and amplitude values of P3 wave obtained from auditory evoked potentials and frontal cortex hemodynamic responses calculated from fNIRS. Lower complexity values, prolonged P3 latency and reduced P3 amplitude values were found in ADHD children. fNIRS indicated that the control subjects exhibited higher right prefrontal activation than ADHD children. Features are analyzed, looking for the best classification accuracy and finally machine learning techniques, namely Support Vector Machines, Naïve Bayes and Multilayer Perception Neural Network, are introduced for EEG signals alone and for combination of fNIRS and EEG signals. Naive Bayes provided the best classification with an accuracy rate of 79.54% and 93.18%, using EEG and EEG-fNIRS systems, respectively. Our findings demonstrate that utilization of information by combining features obtained from fNIRS and EEG improves the classification accuracy. As a conclusion, our method has indicated that EEG-fNIRS multimodal neuroimaging is a promising method for ADHD objective diagnosis.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise