Skip to main content
Erschienen in:

21.05.2024

Combining Nonlinear Features of EEG and MRI to Diagnose Alzheimer’s Disease

verfasst von: Elias Mazrooei Rad, Mahdi Azarnoosh, Majid Ghoshuni, Mohammad Mahdi Khalilzadeh

Erschienen in: Annals of Data Science | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article, a new method for the diagnosis of Alzheimer’s disease in the mild stage is presented according to combining the characteristics of EEG signal and MRI images. The brain signal is recorded in four modes of closed-eyes, open eye, reminder, and stimulation from three channels Pz, Cz, and Fz of 90 participants in three groups of healthy subjects, mild, and severe Alzheimer’s disease (AD) patients.In addition, MRI images are taken with at least 3 Tesla and the thickness of 3 mm so it can be examined the senile plaques and neurofibrillary tangles. Proper image segmentation, mask, and sharp filters are used for preprocessing. Then proper features of brain signals extracted according to the nonlinear and chaotic nature of the brain such as Lyapunov exponent, correlation dimension, and entropy. Results: These features combined with brain MRI images properties including Medial Temporal Lobe Atrophy (MTA), Cerebral Spinal Fluid (CSF), Gray Matter (GM), Index Asymmetry (IA) and White Matter (WM) to diagnose the disease. Then two classifiers, the support vector machine, and Elman neural network are used with the optimal combined features extracted by analysis of variance. Results showed that between the three brain signals, and between the four modes of evaluation, the accuracy of the Pz channel and excitation mode was more than the others. Conclusions: Finally, by using neural network dynamics because of the nonlinear properties studied and due to the nonlinear dynamics of the EEG signal, the Elman neural network is used. However, it is the important to note that, by the way of analyzing medical images, we can determine the most effective channel for recording brain signals. 3D segmentation of MRI images further helps researchers diagnose Alzheimer’s disease and obtain important information. The accuracy of the results in Elman neural network with the combination of brain signal features and medical images is 94.4% and in the case without combining the signal and image features, the accuracy of the results is 92.2%. The use of nonlinear classifiers is more appropriate than other classification methods due to the nonlinear dynamics of the brain signal. The accuracy of the results in the support vector machine with RBF core with the combination of brain signal features and medical images is 75.5% and in the case without combining the signal and image features, the accuracy of the results is 76.8%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Roselli F, Tartaglione B, Federico F, Lepore V, Defazio G, Livrea P (2009) Rate of MMSE score change in Alzheimer’s disease: influence of education and vascular risk factors. Clin Neurol Neurosurg 111(4):327–330CrossRef Roselli F, Tartaglione B, Federico F, Lepore V, Defazio G, Livrea P (2009) Rate of MMSE score change in Alzheimer’s disease: influence of education and vascular risk factors. Clin Neurol Neurosurg 111(4):327–330CrossRef
2.
Zurück zum Zitat Prince MJ, Wimo A, Guerchet MM, Ali GC, Wu YT, Prina M World Alzheimer Report 2015-The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends Prince MJ, Wimo A, Guerchet MM, Ali GC, Wu YT, Prina M World Alzheimer Report 2015-The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends
3.
Zurück zum Zitat Biju KS, Alfa SS, Lal K, Antony A, Akhil MK (2017) Alzheimer’s detection based on segmentation of MRI image. Procedia Comput Sci 115:474–481CrossRef Biju KS, Alfa SS, Lal K, Antony A, Akhil MK (2017) Alzheimer’s detection based on segmentation of MRI image. Procedia Comput Sci 115:474–481CrossRef
4.
Zurück zum Zitat Zhao X, Ang CK, Acharya UR, Cheong KH (2021) Application of Artificial Intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybernetics Biomedical Eng. Apr 5 Zhao X, Ang CK, Acharya UR, Cheong KH (2021) Application of Artificial Intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybernetics Biomedical Eng. Apr 5
5.
Zurück zum Zitat El-Sappagh S, Alonso JM, Islam SR, Sultan AM, Kwak KS (2021) A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease. Sci Rep 11(1):1–26CrossRef El-Sappagh S, Alonso JM, Islam SR, Sultan AM, Kwak KS (2021) A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease. Sci Rep 11(1):1–26CrossRef
6.
Zurück zum Zitat Hett K, Ta VT, Catheline G, Tourdias T, Manjón JV, Coupé P (2019) Multimodal hippocampal subfield grading for Alzheimer’s disease classification. Sci Rep 9(1):1–6CrossRef Hett K, Ta VT, Catheline G, Tourdias T, Manjón JV, Coupé P (2019) Multimodal hippocampal subfield grading for Alzheimer’s disease classification. Sci Rep 9(1):1–6CrossRef
7.
Zurück zum Zitat Clerx L, van Rossum IA, Burns L, Knol DL, Scheltens P, Verhey F, Aalten P, Lapuerta P, Van de Pol L, Van Schijndel R, De Jong R (2013) Measurements of medial temporal lobe atrophy for prediction of Alzheimer’s disease in subjects with mild cognitive impairment. Neurobiol Aging 34(8):2003–2013CrossRef Clerx L, van Rossum IA, Burns L, Knol DL, Scheltens P, Verhey F, Aalten P, Lapuerta P, Van de Pol L, Van Schijndel R, De Jong R (2013) Measurements of medial temporal lobe atrophy for prediction of Alzheimer’s disease in subjects with mild cognitive impairment. Neurobiol Aging 34(8):2003–2013CrossRef
8.
Zurück zum Zitat Huang A, Abugharbieh R, Tam R (2009) A hybrid geometric–statistical deformable model for automated 3-D segmentation in brain MRI. IEEE Trans Biomed Eng 56(7):1838–1848CrossRef Huang A, Abugharbieh R, Tam R (2009) A hybrid geometric–statistical deformable model for automated 3-D segmentation in brain MRI. IEEE Trans Biomed Eng 56(7):1838–1848CrossRef
9.
Zurück zum Zitat Visser PJ, Verhey FR, Hofman PA, Scheltens P, Jolles J (2002) Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. J Neurol Neurosurg Psychiatry 72(4):491–497 Visser PJ, Verhey FR, Hofman PA, Scheltens P, Jolles J (2002) Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. J Neurol Neurosurg Psychiatry 72(4):491–497
10.
Zurück zum Zitat Sun Z, van de Giessen M, Lelieveldt BP, Staring M (2017) Detection of conversion from mild cognitive impairment to Alzheimer’s disease using longitudinal brain MRI. Front Neuroinformatics 11:16CrossRef Sun Z, van de Giessen M, Lelieveldt BP, Staring M (2017) Detection of conversion from mild cognitive impairment to Alzheimer’s disease using longitudinal brain MRI. Front Neuroinformatics 11:16CrossRef
11.
Zurück zum Zitat Perez-Valero E, Minguillon J, Morillas C, Pelayo F, Lopez-Gordo MA (2022) Detection of Alzheimer’s disease using a four-channel EEG montage, in:International Work-Conference on the Interplay Between Natural and Artificial Computation, Springer, pp. 436–445 Perez-Valero E, Minguillon J, Morillas C, Pelayo F, Lopez-Gordo MA (2022) Detection of Alzheimer’s disease using a four-channel EEG montage, in:International Work-Conference on the Interplay Between Natural and Artificial Computation, Springer, pp. 436–445
12.
Zurück zum Zitat Alvi AM, Siuly S, Wang H (2022) A long short-term memory based framework for early detection of mild cognitive impairment from EEG signals. IEEE Trans Emerg Top Comput Intell 1–14 Alvi AM, Siuly S, Wang H (2022) A long short-term memory based framework for early detection of mild cognitive impairment from EEG signals. IEEE Trans Emerg Top Comput Intell 1–14
13.
Zurück zum Zitat Jiang X, Bian GB, Tian Z (2019) Removal of artifacts from EEG signals: a review. Sensors 19(5):987CrossRef Jiang X, Bian GB, Tian Z (2019) Removal of artifacts from EEG signals: a review. Sensors 19(5):987CrossRef
14.
Zurück zum Zitat Micanovic C, Pal S (2014) The diagnostic utility of EEG in early-onset dementia: a systematic review of the literature with narrative analysis. J Neural Transm 121(1):59–69CrossRef Micanovic C, Pal S (2014) The diagnostic utility of EEG in early-onset dementia: a systematic review of the literature with narrative analysis. J Neural Transm 121(1):59–69CrossRef
15.
Zurück zum Zitat Szirmai I, Kamondi A (2011) EEG investigations in cognitive impairments. Ideggyogyaszati Sz 64(1–2):14–23 Szirmai I, Kamondi A (2011) EEG investigations in cognitive impairments. Ideggyogyaszati Sz 64(1–2):14–23
16.
Zurück zum Zitat Jackson CE, Snyder PJ (2008) Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer’s disease. Alzheimer’s Dement 4(1):S137–S143 Jackson CE, Snyder PJ (2008) Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer’s disease. Alzheimer’s Dement 4(1):S137–S143
17.
Zurück zum Zitat Elias MR, Mahdi A, Majid G, Mohammad K (2021) Diagnosis of mild Alzheimer’s disease by EEG and ERP signals using linear and nonlinear classifiers. Biomed Signal Process Control, oct, 103049 Elias MR, Mahdi A, Majid G, Mohammad K (2021) Diagnosis of mild Alzheimer’s disease by EEG and ERP signals using linear and nonlinear classifiers. Biomed Signal Process Control, oct, 103049
18.
Zurück zum Zitat Lee MS, Lee SH, Moon EO, Moon YJ, Kim S, Kim SH, Jung IK (2013) Neuropsychological correlates of the P300 in patients with Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 40:62–69CrossRef Lee MS, Lee SH, Moon EO, Moon YJ, Kim S, Kim SH, Jung IK (2013) Neuropsychological correlates of the P300 in patients with Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 40:62–69CrossRef
19.
Zurück zum Zitat Ouchani M, Gharibzadeh S, Jamshidi M, Amini M (2021) A review of methods of diagnosis and complexity analysis of Alzheimer’s disease using EEG signals, BioMed. Res Int 193–198 Ouchani M, Gharibzadeh S, Jamshidi M, Amini M (2021) A review of methods of diagnosis and complexity analysis of Alzheimer’s disease using EEG signals, BioMed. Res Int 193–198
20.
Zurück zum Zitat Burton EJ, Barber R, Mukaetova-Ladinska EB, Robson J, Perry RH, Jaros E, Kalaria RN, O’brien JT (2009) Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain 132(1):195–203CrossRef Burton EJ, Barber R, Mukaetova-Ladinska EB, Robson J, Perry RH, Jaros E, Kalaria RN, O’brien JT (2009) Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain 132(1):195–203CrossRef
21.
Zurück zum Zitat Hajmanouchehri R (2017) CT scan and MRI findings in patients with dementia. Sci J Forensic Med 23(3):150–159 Hajmanouchehri R (2017) CT scan and MRI findings in patients with dementia. Sci J Forensic Med 23(3):150–159
22.
Zurück zum Zitat Zhao X, Ang CKE, Acharya UR, Cheong KH (2021) Application of artificial intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybern Biomed Eng 41(2):456–473CrossRef Zhao X, Ang CKE, Acharya UR, Cheong KH (2021) Application of artificial intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybern Biomed Eng 41(2):456–473CrossRef
23.
Zurück zum Zitat Wood PL, Barnette BL, Kaye JA, Quinn JF, Woltjer RL (2015) Non-targeted lipidomics of CSF and frontal cortex grey and white matter in control, mild cognitive impairment, and Alzheimer’s disease subjects. Acta Neuropsychiatrica 27(5):270–278CrossRef Wood PL, Barnette BL, Kaye JA, Quinn JF, Woltjer RL (2015) Non-targeted lipidomics of CSF and frontal cortex grey and white matter in control, mild cognitive impairment, and Alzheimer’s disease subjects. Acta Neuropsychiatrica 27(5):270–278CrossRef
24.
Zurück zum Zitat Brill FZ, Brown DE, Martin WN (1992) Fast generic selection of features for neural network classifiers. IEEE Trans Neural Networks 3(2):324–328CrossRef Brill FZ, Brown DE, Martin WN (1992) Fast generic selection of features for neural network classifiers. IEEE Trans Neural Networks 3(2):324–328CrossRef
25.
Zurück zum Zitat Chowdhury RH, Reaz MB, Ali MA, Bakar AA, Chellappan K, Chang TG (2013) Surface electromyography signal processing and classification techniques. Sensors 13(9):12431–12466CrossRef Chowdhury RH, Reaz MB, Ali MA, Bakar AA, Chellappan K, Chang TG (2013) Surface electromyography signal processing and classification techniques. Sensors 13(9):12431–12466CrossRef
26.
Zurück zum Zitat Rabeh AB, Benzarti F, Amiri H Diagnosis of alzheimer diseases in early step using SVM (Support Vector Machine). In2016 13th International conference on computer graphics, imaging and visualization (CGiV) 2016 Mar 29 (pp. 364–367). IEEE Rabeh AB, Benzarti F, Amiri H Diagnosis of alzheimer diseases in early step using SVM (Support Vector Machine). In2016 13th International conference on computer graphics, imaging and visualization (CGiV) 2016 Mar 29 (pp. 364–367). IEEE
27.
Zurück zum Zitat Papadaniil CD, Kosmidou VE, Tsolaki A, Tsolaki M, Kompatsiaris IY, Hadjileontiadis LJ (2016) Cognitive MMN and P300 in mild cognitive impairment and Alzheimer’s disease: a high density EEG-3D vector field tomography approach. Brain Res 1648:425–433CrossRef Papadaniil CD, Kosmidou VE, Tsolaki A, Tsolaki M, Kompatsiaris IY, Hadjileontiadis LJ (2016) Cognitive MMN and P300 in mild cognitive impairment and Alzheimer’s disease: a high density EEG-3D vector field tomography approach. Brain Res 1648:425–433CrossRef
28.
Zurück zum Zitat Hedges D, Janis R, Mickelson S, Keith C, Bennett D, Brown BL (2016) P300 amplitude in Alzheimer’s disease: a meta-analysis and meta-regression. Clin EEG Neurosci 47(1):48–55CrossRef Hedges D, Janis R, Mickelson S, Keith C, Bennett D, Brown BL (2016) P300 amplitude in Alzheimer’s disease: a meta-analysis and meta-regression. Clin EEG Neurosci 47(1):48–55CrossRef
29.
Zurück zum Zitat Dan Pan1, Zeng A, Huang L Jia1 (2020 May) Tory Frizzell and Xiaowei Song. Early detection of Alzheimer’s Disease using magnetic resonance imaging: a Novel Approach combining Convolutional neural networks and ensemble learning. Frontiers in Neurosciene. 13(2):17–34 Dan Pan1, Zeng A, Huang L Jia1 (2020 May) Tory Frizzell and Xiaowei Song. Early detection of Alzheimer’s Disease using magnetic resonance imaging: a Novel Approach combining Convolutional neural networks and ensemble learning. Frontiers in Neurosciene. 13(2):17–34
30.
Zurück zum Zitat Saraswati Sridhar 1 and Vidya Manian (2020) EEG and deep learning based brain cognitive function classification. Computers 9:104CrossRef Saraswati Sridhar 1 and Vidya Manian (2020) EEG and deep learning based brain cognitive function classification. Computers 9:104CrossRef
31.
Zurück zum Zitat Saman Fouladi AA, Safaei N, Mammone F, Ghaderi, Ebadi MJ (2022) Efficient deep neural networks for classification of Alzheimer’s disease and mild cognitive impairment from Scalp EEG recordings. Cognit Comput. 1247–1268 Saman Fouladi AA, Safaei N, Mammone F, Ghaderi, Ebadi MJ (2022) Efficient deep neural networks for classification of Alzheimer’s disease and mild cognitive impairment from Scalp EEG recordings. Cognit Comput. 1247–1268
32.
Zurück zum Zitat JunHyun Kim M, Jeong WR, Stiles, Choi HS (2022) Neuroimaging modalities in Alzheimer’s Disease: diagnosis and clinical features. Int J Mol Sciene Jun 14–36 JunHyun Kim M, Jeong WR, Stiles, Choi HS (2022) Neuroimaging modalities in Alzheimer’s Disease: diagnosis and clinical features. Int J Mol Sciene Jun 14–36
Metadaten
Titel
Combining Nonlinear Features of EEG and MRI to Diagnose Alzheimer’s Disease
verfasst von
Elias Mazrooei Rad
Mahdi Azarnoosh
Majid Ghoshuni
Mohammad Mahdi Khalilzadeh
Publikationsdatum
21.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science / Ausgabe 1/2025
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00533-4