Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

02.01.2019 | Regular Paper

Combining semantic and term frequency similarities for text clustering

Zeitschrift:
Knowledge and Information Systems
Autoren:
Victor Hugo Andrade Soares, Ricardo J. G. B. Campello, Seyednaser Nourashrafeddin, Evangelos Milios, Murilo Coelho Naldi
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

A key challenge for document clustering consists in finding a proper similarity measure for text documents that enables the generation of cohesive groups. Measures based on the classic bag-of-words model take into account solely the presence (and frequency) of words in documents. In doing so, semantically similar documents which use different vocabularies may end up in different clusters. For this reason, semantic similarity measures that use external knowledge, such as word n-gram corpora or thesauri, have been proposed in the literature. In this paper, the Frequency Google Tri-gram Measure is proposed to assess similarity between documents based on the frequencies of terms in the compared documents as well as the Google n-gram corpus as an additional semantic similarity source. Clustering algorithms are applied to several real datasets in order to experimentally evaluate the quality of the clusters obtained with the proposed measure and compare it with a number of state-of-the-art measures from the literature. The experimental results demonstrate that the proposed measure improves significantly the quality of document clustering, based on statistical tests. We further demonstrate that clustering results combining bag-of-words and semantic similarity are superior to those obtained with either approach independently.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise