Skip to main content

2016 | OriginalPaper | Buchkapitel

22. Commentary by Giuseppe Vitiello

Filling the Gap Between Neuronal Activity and Macroscopic Functional Brain Behavior

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two complementary approaches have been used to study brain and in general biological systems. In one of the approaches the brain-system is split into a large number of components, which are then studied in all their details. The problem of combining the data so accumulated in a working scheme able to account for the macroscopic observed functioning of the brain often is left unsolved since it is actually out of reach in this approach. Contradictory features often arise, indeed. For example, it is not clear how the high effectiveness and stability of some characterizing brain features may result from the random biomolecular activity of the brain component cells. A dilemma already pointed out by Lashley in neuroscience, and by Schrödinger in biology, but still waiting an answer. This first approach is the naturalistic approach. The other approach is the dynamical approach aiming to provide a comprehension of macroscopic features of the brain behavior on the basis of the data provided by the first approach. Both approaches appear thus to be necessary, although each one of them, separately considered, is not sufficient to account for the full understanding of brain functioning. A bridge between these approaches could be built following the strategy successfully used in the study of many-body condensed matter physics. In this direction moves the dissipative many-body model of brain, where the observed dynamic amplitude modulated (AM) assemblies of coherently oscillating neurons are described in the frame of the quantum field theory of spontaneously broken symmetry theories. Observations of scale free and critical phenomena in brain activity are also related to the coherent dynamics playing a crucial role in the dissipative model. A representation in terms of thermodynamic generalized Carnot-Rankine cycles is provided, which describes the process of formation of the coherent AM patterns as a transition from disordered, gas-like state of high entropy to liquid-like organized neuronal configurations of low entropy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The phenomenon of decoherence, known to occur in quantum mechanics, does not affect QFT, as observed in coherent systems with very long life-time, such as superconductors, ferromagnets, crystals, which are described by coherent many-body dynamics. Coherent structures are observed to occur in condensed matter physics in a wide range of temperature, from quite high temperature (such as \(3545\,^{\circ }\)C for diamond crystal melting) to very low temperature (such as \({-}252\,^{\circ }\)C in superconductors).
 
Literatur
1.
Zurück zum Zitat Arvanitaki A (1942) Effects evoked in an axon by the activity of a contiguous one. J Neurophysiol 5(2):89–108 Arvanitaki A (1942) Effects evoked in an axon by the activity of a contiguous one. J Neurophysiol 5(2):89–108
2.
Zurück zum Zitat Blasone M, Jizba P, Vitiello G (2011) Quantum field theory and its macroscopic manifestations. Imperial College Press, LondonCrossRefMATH Blasone M, Jizba P, Vitiello G (2011) Quantum field theory and its macroscopic manifestations. Imperial College Press, LondonCrossRefMATH
3.
Zurück zum Zitat Capolupo A, Freeman WJ, Vitiello G (2013) Dissipation of dark energy by cortex in knowledge retrieval. Phys Life Rev 10:8594 Capolupo A, Freeman WJ, Vitiello G (2013) Dissipation of dark energy by cortex in knowledge retrieval. Phys Life Rev 10:8594
4.
Zurück zum Zitat Cassirer E (1968) Storia della filosofia moderna, vol 3. Il Saggiatore, Milano Cassirer E (1968) Storia della filosofia moderna, vol 3. Il Saggiatore, Milano
5.
Zurück zum Zitat Fingelkurts AA, Fingelkurts AA (2004) Making complexity simpler: multivariability and metastability in the brain. Int J Neurosci 114:843–862CrossRef Fingelkurts AA, Fingelkurts AA (2004) Making complexity simpler: multivariability and metastability in the brain. Int J Neurosci 114:843–862CrossRef
7.
Zurück zum Zitat Freeman WJ (2001) How brains make up their minds. Columbia University Press, New York Freeman WJ (2001) How brains make up their minds. Columbia University Press, New York
9.
Zurück zum Zitat Freeman WJ (2009) Deep analysis of perception through dynamic structures that emerge in cortical activity from self-regulated noise. Cogn Neurodyn 3(1):105–116CrossRef Freeman WJ (2009) Deep analysis of perception through dynamic structures that emerge in cortical activity from self-regulated noise. Cogn Neurodyn 3(1):105–116CrossRef
10.
Zurück zum Zitat Freeman WJ (2015) Mechanism and significance of global coherence in scalp EEG. Curr Opin Neurobiol 31:199–205CrossRef Freeman WJ (2015) Mechanism and significance of global coherence in scalp EEG. Curr Opin Neurobiol 31:199–205CrossRef
12.
Zurück zum Zitat Freeman WJ, Cao Y (2008) Proposed renormalization group analysis of nonlinear brain dynamics at criticality, Chapter 27. In: Wang R, Gu F (eds) Advances in cognitive neurodynamics ICCN 2007. Springer, Heidelberg, pp 147–158 Freeman WJ, Cao Y (2008) Proposed renormalization group analysis of nonlinear brain dynamics at criticality, Chapter 27. In: Wang R, Gu F (eds) Advances in cognitive neurodynamics ICCN 2007. Springer, Heidelberg, pp 147–158
14.
Zurück zum Zitat Freeman WJ, Vitiello G (2006) Nonlinear brain dynamics as macroscopic manifestation of underlying many-body dynamics. Phys Life Rev 3:93118CrossRef Freeman WJ, Vitiello G (2006) Nonlinear brain dynamics as macroscopic manifestation of underlying many-body dynamics. Phys Life Rev 3:93118CrossRef
17.
Zurück zum Zitat Freeman WJ, Capolupo A, Kozma R, Olivares del Campo A, Vitiello G (2015) Bessel functions in mass action modeling of memories and remembrances. Phys Lett A (in press) Freeman WJ, Capolupo A, Kozma R, Olivares del Campo A, Vitiello G (2015) Bessel functions in mass action modeling of memories and remembrances. Phys Lett A (in press)
18.
Zurück zum Zitat Freeman WJ, Kozma R, Vitiello G (2012) Adaptation of the generalized Carnot cycle to describe thermodynamics of cerebral cortex. In: Proceedings of the IEEE world congress on computational intelligence WCCI/IJCNN. IEEE Press, Brisbane, pp 3229–3236 Freeman WJ, Kozma R, Vitiello G (2012) Adaptation of the generalized Carnot cycle to describe thermodynamics of cerebral cortex. In: Proceedings of the IEEE world congress on computational intelligence WCCI/IJCNN. IEEE Press, Brisbane, pp 3229–3236
19.
Zurück zum Zitat Freeman WJ, Livi R, Obinata M, Vitiello G (2012) Cortical phase transitions, non-equilibrium thermodynamics and the time-dependent Ginzburg-Landau equation. Int J Mod Phys B 26:1250035CrossRefMATH Freeman WJ, Livi R, Obinata M, Vitiello G (2012) Cortical phase transitions, non-equilibrium thermodynamics and the time-dependent Ginzburg-Landau equation. Int J Mod Phys B 26:1250035CrossRefMATH
20.
Zurück zum Zitat Fröhlich H (1968) Long range coherence and energy storage in biological systems. Int J Quantum Chem 2:641–649CrossRef Fröhlich H (1968) Long range coherence and energy storage in biological systems. Int J Quantum Chem 2:641–649CrossRef
21.
Zurück zum Zitat Fröhlich H (1977) Long range coherence in biological systems. La Riv del Nuovo Cim 7:399–418 Fröhlich H (1977) Long range coherence in biological systems. La Riv del Nuovo Cim 7:399–418
22.
Zurück zum Zitat Grundfest H (1959) Synaptic and ephaptic transmission. In: Fields J (ed) Handbook of physiology, vol 1, p 14798 [p 1902] Grundfest H (1959) Synaptic and ephaptic transmission. In: Fields J (ed) Handbook of physiology, vol 1, p 14798 [p 1902]
24.
Zurück zum Zitat Kozma R, Freeman JW (2001) Chaotic resonance: methods and applications for robust classification of noisy and variable patterns. Int J Bifurc Chaos 10:2307–2322 Kozma R, Freeman JW (2001) Chaotic resonance: methods and applications for robust classification of noisy and variable patterns. Int J Bifurc Chaos 10:2307–2322
25.
Zurück zum Zitat Kozma R, Freeman WJ (2002) Classification of EEG patterns using nonlinear dynamics and identifying chaotic phase transitions. Neurocomputing 44:1107–1112CrossRefMATH Kozma R, Freeman WJ (2002) Classification of EEG patterns using nonlinear dynamics and identifying chaotic phase transitions. Neurocomputing 44:1107–1112CrossRefMATH
26.
Zurück zum Zitat Kozma R, Puljic M (2015) Random graph theory and neuropercolation for modeling brain oscillations at criticality. Curr Opin Neurobiol 31:181–188CrossRef Kozma R, Puljic M (2015) Random graph theory and neuropercolation for modeling brain oscillations at criticality. Curr Opin Neurobiol 31:181–188CrossRef
27.
Zurück zum Zitat Kozma R, Puljic M, Balister P, Bollobs B, Freeman WJ (2005) Emergence of collective dynamics in the percolation model of neural populations: mixed model with local and non-local interactions. Biol Cybern 92:367–379CrossRefMATH Kozma R, Puljic M, Balister P, Bollobs B, Freeman WJ (2005) Emergence of collective dynamics in the percolation model of neural populations: mixed model with local and non-local interactions. Biol Cybern 92:367–379CrossRefMATH
28.
Zurück zum Zitat Lashley KS (1942) The problem of cerebral organization in vision. In: Cattell J (ed) Biological symposia VII, pp 301–322 Lashley KS (1942) The problem of cerebral organization in vision. In: Cattell J (ed) Biological symposia VII, pp 301–322
29.
Zurück zum Zitat Pessa E, Vitiello G (2003) Quantum noise, entanglement and chaos in the quantum field theory of mind/brain states. Mind Matter 1:59–79 Pessa E, Vitiello G (2003) Quantum noise, entanglement and chaos in the quantum field theory of mind/brain states. Mind Matter 1:59–79
30.
Zurück zum Zitat Petermann T, Thiagarajan TA, Lebedev M, Nicoleli M, Chialvo DR, Plenz D (2009) Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc Natl Acad Sci 106(37):15921–15926CrossRef Petermann T, Thiagarajan TA, Lebedev M, Nicoleli M, Chialvo DR, Plenz D (2009) Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc Natl Acad Sci 106(37):15921–15926CrossRef
31.
Zurück zum Zitat Plenz D, Thiagaran TC (2007) The organizing principles of neural avalanches: cell assemblies in the cortex. Trends Neurosci 30:10110CrossRef Plenz D, Thiagaran TC (2007) The organizing principles of neural avalanches: cell assemblies in the cortex. Trends Neurosci 30:10110CrossRef
32.
Zurück zum Zitat Pribram KH (1971) Languages of the brain. Prentice-Hall, Engelwood Cliffs Pribram KH (1971) Languages of the brain. Prentice-Hall, Engelwood Cliffs
33.
Zurück zum Zitat Pribram KH (1991) Brain and perception. Lawrence Erlbaum, Hillsdale Pribram KH (1991) Brain and perception. Lawrence Erlbaum, Hillsdale
34.
Zurück zum Zitat Rice SO (1950) Mathematical analysis of random noise—and appendices. Technical Publications Monograph B-1589. Bell Telephone Labs Inc, New York Rice SO (1950) Mathematical analysis of random noise—and appendices. Technical Publications Monograph B-1589. Bell Telephone Labs Inc, New York
35.
Zurück zum Zitat Ricciardi LM, Umezawa H (1967) Brain and physics of many-body problems. Kybernetik 4:44–48. Reprint in: Globus GG, Pribram KH, Vitiello G (eds) Brain and being. John Benjamins, Amsterdam, pp 255–266, (2004) Ricciardi LM, Umezawa H (1967) Brain and physics of many-body problems. Kybernetik 4:44–48. Reprint in: Globus GG, Pribram KH, Vitiello G (eds) Brain and being. John Benjamins, Amsterdam, pp 255–266, (2004)
36.
Zurück zum Zitat Schrödinger E (1944) What is life? Cambridge University Press, Cambridge (1967 reprint) Schrödinger E (1944) What is life? Cambridge University Press, Cambridge (1967 reprint)
37.
Zurück zum Zitat Skarda CA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Brain Behav Sci 10:161–195CrossRef Skarda CA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Brain Behav Sci 10:161–195CrossRef
38.
Zurück zum Zitat Stapp HP (2014) Mind, brain, and neuroscience, preprint March 5. University of California, Berkeley, California, Lawrence Berkeley Laboratory 94720 Stapp HP (2014) Mind, brain, and neuroscience, preprint March 5. University of California, Berkeley, California, Lawrence Berkeley Laboratory 94720
39.
Zurück zum Zitat Tsuda I (2001) Towards an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24:793–810CrossRef Tsuda I (2001) Towards an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24:793–810CrossRef
40.
Zurück zum Zitat Umezawa H (1993) Advanced field theory: micro, macro and thermal concepts. American Institute of Physics, New York Umezawa H (1993) Advanced field theory: micro, macro and thermal concepts. American Institute of Physics, New York
41.
Zurück zum Zitat Vitiello G (1995) Dissipation and memory capacity in the quantum brain model. Int J Mod Phys B 9:973–989CrossRef Vitiello G (1995) Dissipation and memory capacity in the quantum brain model. Int J Mod Phys B 9:973–989CrossRef
42.
44.
Zurück zum Zitat Vitiello G (2009) Coherent states, fractals and brain waves. New Math Nat Comput 5:245–264CrossRefMATH Vitiello G (2009) Coherent states, fractals and brain waves. New Math Nat Comput 5:245–264CrossRefMATH
45.
46.
Zurück zum Zitat Vitiello G (2014) On the isomorphism between dissipative systems, fractal self-similarity and electrodynamics. Toward an integrated vision of nature. Systems 2:203–216CrossRef Vitiello G (2014) On the isomorphism between dissipative systems, fractal self-similarity and electrodynamics. Toward an integrated vision of nature. Systems 2:203–216CrossRef
47.
Zurück zum Zitat Vitiello G (2014) The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning. Curr Opin Neurobiol 31:712 Vitiello G (2014) The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning. Curr Opin Neurobiol 31:712
48.
Zurück zum Zitat von Neumann J (1958) The computer and the brain. Yale University Press, New HavenMATH von Neumann J (1958) The computer and the brain. Yale University Press, New HavenMATH
49.
Zurück zum Zitat Werbos PJ (2015) (Contribution in this book) Werbos PJ (2015) (Contribution in this book)
Metadaten
Titel
Commentary by Giuseppe Vitiello
verfasst von
Giuseppe Vitiello
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-24406-8_22