Skip to main content

2016 | OriginalPaper | Buchkapitel

3. Compact Models of TFETs

verfasst von : Lining Zhang, Mansun Chan

Erschienen in: Tunneling Field Effect Transistor Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rapid developments in the TFETs’ process and rising interests in evaluating their potential in low-power circuits/systems require a TFET compact model for SPICE simulations. In this chapter, we discuss the essential device physics of TFETs, propose necessary simplifications of their complex operations, and develop a core model for homojunction TFETs. At first, we analyze the roles of TFET channel charge in affecting their subthreshold swing and superlinear output. Bearing this in mind, we divide the TFET structure into three distinctive regions for the purposes of considering the channel charge and at the same time getting a closed-form solution of the device electrostatics. After that, we find a simplification to the integration formulation of the interband tunneling physics to derive the current model. With a straightforward derivation, we obtain the terminal charge model and therefore finish the core model development. Around this core, we are adding advanced effect modules and specifically introduce the gate leakage module and short-channel effect module here. Finally, we analyze the basic operations of heterojunction TFETs and possible challenges in their model developments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Dewey, B.C. Kung, J. Boardman, J.M. Fastenau, J. Kavalieros, R. Kotlyar, W.K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H. Then, R. Chau, Fabrication, characterization, and physics of III-V heterojunction tunneling field effect transistors for steep sub-threshold swing. IEDM Tech. Dig. 785–788 (2011) G. Dewey, B.C. Kung, J. Boardman, J.M. Fastenau, J. Kavalieros, R. Kotlyar, W.K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H. Then, R. Chau, Fabrication, characterization, and physics of III-V heterojunction tunneling field effect transistors for steep sub-threshold swing. IEDM Tech. Dig. 785–788 (2011)
2.
Zurück zum Zitat H. Riel, K. Moselund, C. Bessire, M.T. Bjork, A. Schenk, H. Ghoneim, H. Schmid, InAs/Si heterojunc-tion nanowire tunnel diodes and tunnel FETs. IEDM Tech. Dig. 391–394 (2012) H. Riel, K. Moselund, C. Bessire, M.T. Bjork, A. Schenk, H. Ghoneim, H. Schmid, InAs/Si heterojunc-tion nanowire tunnel diodes and tunnel FETs. IEDM Tech. Dig. 391–394 (2012)
3.
Zurück zum Zitat M. Goto, Y. Kondo, Y. Morita, S. Migita, A. Hokazono, H. Ota, M. Masahara, S. Kawanaka, The guideline of Si/SiGe heterojunction design in parallel plate style TFETs for Si CMOS platform implementation. SSDM Tech. Dig. 852–853 (2014) M. Goto, Y. Kondo, Y. Morita, S. Migita, A. Hokazono, H. Ota, M. Masahara, S. Kawanaka, The guideline of Si/SiGe heterojunction design in parallel plate style TFETs for Si CMOS platform implementation. SSDM Tech. Dig. 852–853 (2014)
4.
Zurück zum Zitat U.E. Avci, S. Hasan, D.E. Nikonov, R. Rios, K. Kuhn, I.A. Young, Understanding the feasibility of scaled III-V TFET for logic by bringing atomistic simulations and experimental results. VLSI Tech. Dig. 183–184 (2012) U.E. Avci, S. Hasan, D.E. Nikonov, R. Rios, K. Kuhn, I.A. Young, Understanding the feasibility of scaled III-V TFET for logic by bringing atomistic simulations and experimental results. VLSI Tech. Dig. 183–184 (2012)
5.
Zurück zum Zitat U.E. Avci, I.A. Young, Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9 nm gate length. IEDM Tech. Dig. 96–99 (2013) U.E. Avci, I.A. Young, Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9 nm gate length. IEDM Tech. Dig. 96–99 (2013)
9.
Zurück zum Zitat Y. Tsividis, Operation and Modeling of the MOS transistor. (Oxford University Press, New York) Y. Tsividis, Operation and Modeling of the MOS transistor. (Oxford University Press, New York)
10.
Zurück zum Zitat D. Kim, Y. Lee, J. Cai, I. Lauer, L. Chang, S.J. Koster, D. Sylvester, D. Blaauw, Low power circuit design based on heterojunction tunneling transistors (HETTs). Proc. ISLPED 219–224 (2009) D. Kim, Y. Lee, J. Cai, I. Lauer, L. Chang, S.J. Koster, D. Sylvester, D. Blaauw, Low power circuit design based on heterojunction tunneling transistors (HETTs). Proc. ISLPED 219–224 (2009)
11.
Zurück zum Zitat Y. Hong, Y. Yang, L. Yang, G. Samudra, C.H. Heng, Y.C. Yeo, SPICE behavioral model of the tunneling field-effect transistor for circuit simulation. IEEE Trans. Circuits Syst. II Express Briefs 56(12), 946–950 (2009)CrossRef Y. Hong, Y. Yang, L. Yang, G. Samudra, C.H. Heng, Y.C. Yeo, SPICE behavioral model of the tunneling field-effect transistor for circuit simulation. IEEE Trans. Circuits Syst. II Express Briefs 56(12), 946–950 (2009)CrossRef
12.
Zurück zum Zitat V. Saripalli, A.K. Mishra, S. Datta, V. Narayanan, An energy efficient heterogeneous CMP based on hybrid TFET-CMOS cores. Proc DAC 729–734 (2011) V. Saripalli, A.K. Mishra, S. Datta, V. Narayanan, An energy efficient heterogeneous CMP based on hybrid TFET-CMOS cores. Proc DAC 729–734 (2011)
13.
Zurück zum Zitat W.G. Vandenberghe, A.S. Verhulst, G. Groeseneken, B. Soree, W. Magnus, Analytical model for point and line tunneling in a tunnel field-effect-transistor. Proc. SISPAD 137–140 (2008) W.G. Vandenberghe, A.S. Verhulst, G. Groeseneken, B. Soree, W. Magnus, Analytical model for point and line tunneling in a tunnel field-effect-transistor. Proc. SISPAD 137–140 (2008)
14.
Zurück zum Zitat A.S. Verhulst, B. Soree, D. Leonelli, W.G. Vandenberghe, G. Groeseneken, Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect-transistor. J. Appl. Phys. 107(2), 024518 (2010)CrossRef A.S. Verhulst, B. Soree, D. Leonelli, W.G. Vandenberghe, G. Groeseneken, Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect-transistor. J. Appl. Phys. 107(2), 024518 (2010)CrossRef
15.
Zurück zum Zitat A.S. Verhulst, D. Leonelli, R. Rooyachers, G. Groeseneken, Drain voltage dependent analytical model of tunnel field-effect transistors. J. Appl. Phys. 110(2), 024510 (2011)CrossRef A.S. Verhulst, D. Leonelli, R. Rooyachers, G. Groeseneken, Drain voltage dependent analytical model of tunnel field-effect transistors. J. Appl. Phys. 110(2), 024510 (2011)CrossRef
16.
Zurück zum Zitat M.G. Bardon, H.P. Neves, R. Puers, C.V. Hoof, Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron. Devices 57(4), 827–834 (2010)CrossRef M.G. Bardon, H.P. Neves, R. Puers, C.V. Hoof, Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron. Devices 57(4), 827–834 (2010)CrossRef
17.
Zurück zum Zitat M.J. Lee, W.Y. Choi, Analytical model of single-gate silicon-on-insulator tunneling field-effect transistors. Solid State Elec. 30(1), 110–114 (2011)CrossRef M.J. Lee, W.Y. Choi, Analytical model of single-gate silicon-on-insulator tunneling field-effect transistors. Solid State Elec. 30(1), 110–114 (2011)CrossRef
18.
Zurück zum Zitat J. Wan, C.L. Royer, A. Zaslavsky, S. Cristoloveanu, A tunneling field effect transistor model combining interband tunneling and channel transport. J. Appl. Phys. 110(10), 104503 (2011)CrossRef J. Wan, C.L. Royer, A. Zaslavsky, S. Cristoloveanu, A tunneling field effect transistor model combining interband tunneling and channel transport. J. Appl. Phys. 110(10), 104503 (2011)CrossRef
19.
Zurück zum Zitat Y. Yang, X. Tong, L. Yang, P. Guo, L. Fan, Y. Yeo, Tunneling Field-effect transistor: capacitance components and modeling. IEEE Electron. Devices Lett. 31(7), 752–754 (2010)CrossRef Y. Yang, X. Tong, L. Yang, P. Guo, L. Fan, Y. Yeo, Tunneling Field-effect transistor: capacitance components and modeling. IEEE Electron. Devices Lett. 31(7), 752–754 (2010)CrossRef
20.
Zurück zum Zitat P.M. Solomon, D.J. Frank, S.O. Koswatta, Compact model and performance estimation for tunneling nanowire FET. Proc. DRC 197–198 (2011) P.M. Solomon, D.J. Frank, S.O. Koswatta, Compact model and performance estimation for tunneling nanowire FET. Proc. DRC 197–198 (2011)
21.
Zurück zum Zitat A.S. Verhulst, W.G. Vandenberghe, K. Maex, G. Groeseneken, Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91, 053102 (2007)CrossRef A.S. Verhulst, W.G. Vandenberghe, K. Maex, G. Groeseneken, Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91, 053102 (2007)CrossRef
22.
Zurück zum Zitat A. Ortiz-Conde, F. Sánchez, J. Muci, A. Barrios, J.J. Liou, C. Ho, Revisiting MOSFET threshold voltage extraction methods. Micro. Relia. 53(1), 90–104 (2013)CrossRef A. Ortiz-Conde, F. Sánchez, J. Muci, A. Barrios, J.J. Liou, C. Ho, Revisiting MOSFET threshold voltage extraction methods. Micro. Relia. 53(1), 90–104 (2013)CrossRef
23.
Zurück zum Zitat D. Mohata, B. Rajamohanan, T. Mayer, M. Hudait, J. Fastenau, D. Lubyshey, A. Liu, S. Datta, Barrier-engineered arsenide-antimonide heterojunction tunnel FETs with enhanced drive current. IEEE Electron. Device Lett. 33(11), 1568–1570 (2012)CrossRef D. Mohata, B. Rajamohanan, T. Mayer, M. Hudait, J. Fastenau, D. Lubyshey, A. Liu, S. Datta, Barrier-engineered arsenide-antimonide heterojunction tunnel FETs with enhanced drive current. IEEE Electron. Device Lett. 33(11), 1568–1570 (2012)CrossRef
24.
Zurück zum Zitat K. Moselund, M.T. Björk, H. Schmid, H. Ghoneim, S. Karg, E. Lörtscher, W. Riess, H. Riel, Silicon nanowire tunnel FETs: low temperature operation and influence of high-k gate dielectric. IEEE Trans. Electron. Devices 58(9), 2911–2916 (2011)CrossRef K. Moselund, M.T. Björk, H. Schmid, H. Ghoneim, S. Karg, E. Lörtscher, W. Riess, H. Riel, Silicon nanowire tunnel FETs: low temperature operation and influence of high-k gate dielectric. IEEE Trans. Electron. Devices 58(9), 2911–2916 (2011)CrossRef
25.
Zurück zum Zitat J. Nah, E. Liu, K. Varahramyan, D. Dillen, S. McCoy, J. Chan, E. Tutuc, Enhanced-performance germanium nanowire tunneling field-effect transistors using flash-assisted rapid thermal process. IEEE Electron. Device Lett. 31(12), 1359–1361 (2010)CrossRef J. Nah, E. Liu, K. Varahramyan, D. Dillen, S. McCoy, J. Chan, E. Tutuc, Enhanced-performance germanium nanowire tunneling field-effect transistors using flash-assisted rapid thermal process. IEEE Electron. Device Lett. 31(12), 1359–1361 (2010)CrossRef
26.
Zurück zum Zitat S. Richter, C. Sandow, A. Nichau, S. Trellenkamp, M. Schmidt, R. Luptak, K. Bourdelle, Q. Zhao, S. Mantl, Omega-gated silicon and strained silicon nanowire array tunneling FETs. IEEE Electron. Device Lett. 33(11), 1535–1537 (2012)CrossRef S. Richter, C. Sandow, A. Nichau, S. Trellenkamp, M. Schmidt, R. Luptak, K. Bourdelle, Q. Zhao, S. Mantl, Omega-gated silicon and strained silicon nanowire array tunneling FETs. IEEE Electron. Device Lett. 33(11), 1535–1537 (2012)CrossRef
27.
Zurück zum Zitat P.M. Solomon, J. Jopling, D.J. Frank, C. D’Emic, O. Dokumaci, P. Ronsheim, W. Haensch, Universal tunneling behavior in technologically relevant P/N junction diodes. J. Appl. Phys. 95(10), 5800–5812 (2004)CrossRef P.M. Solomon, J. Jopling, D.J. Frank, C. D’Emic, O. Dokumaci, P. Ronsheim, W. Haensch, Universal tunneling behavior in technologically relevant P/N junction diodes. J. Appl. Phys. 95(10), 5800–5812 (2004)CrossRef
28.
Zurück zum Zitat L. Zhang, M. Chan, SPICE modeling of double-gate tunnel FETs including channel transports. IEEE Trans. Electron. Devices 61(2), 300–307 (2014)CrossRef L. Zhang, M. Chan, SPICE modeling of double-gate tunnel FETs including channel transports. IEEE Trans. Electron. Devices 61(2), 300–307 (2014)CrossRef
29.
Zurück zum Zitat S. Mookerjea, R. Krishnan, S. Datta, V. Narayanan, On enhanced Miller capacitance effect in interband tunnel transistor. IEEE Electron. Devices Lett. 30(10), 1102–1104 (2009)CrossRef S. Mookerjea, R. Krishnan, S. Datta, V. Narayanan, On enhanced Miller capacitance effect in interband tunnel transistor. IEEE Electron. Devices Lett. 30(10), 1102–1104 (2009)CrossRef
30.
Zurück zum Zitat L. Zhang, X. Lin, J. He, M. Chan, An analytical charge model for double-gate tunneling FETs. IEEE Trans. Electron. Devices 59(12), 3217–3223 (2012)CrossRef L. Zhang, X. Lin, J. He, M. Chan, An analytical charge model for double-gate tunneling FETs. IEEE Trans. Electron. Devices 59(12), 3217–3223 (2012)CrossRef
31.
Zurück zum Zitat K.K. Young, Short-channel effect in fully depleted SOI MOSFET’s. IEEE Trans. Electron. Devices 36(2), 399–402 (1989)CrossRef K.K. Young, Short-channel effect in fully depleted SOI MOSFET’s. IEEE Trans. Electron. Devices 36(2), 399–402 (1989)CrossRef
32.
Zurück zum Zitat L. Zhang, S. Wang, C. Ma, J. He, C. Xu, Y. Ma, Y. Ye, H. Liang, Q. Chen, M. Chan, Gate underlap design for short channel effects control in cylindrical gate-all around MOSFETs based on an analytical model. IETE Tech. Rev. 29(1), 29–35 (2012)CrossRef L. Zhang, S. Wang, C. Ma, J. He, C. Xu, Y. Ma, Y. Ye, H. Liang, Q. Chen, M. Chan, Gate underlap design for short channel effects control in cylindrical gate-all around MOSFETs based on an analytical model. IETE Tech. Rev. 29(1), 29–35 (2012)CrossRef
33.
Zurück zum Zitat S. Lin, J. Kuo, Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans. Electron. Devices 50(12), 2559–2564 (2003)CrossRef S. Lin, J. Kuo, Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans. Electron. Devices 50(12), 2559–2564 (2003)CrossRef
34.
Zurück zum Zitat E. Arnold, Charge-sheet model for silicon carbide inversion layers. IEEE Trans. Electron. Devices 46(3), 497–503 (1999)CrossRef E. Arnold, Charge-sheet model for silicon carbide inversion layers. IEEE Trans. Electron. Devices 46(3), 497–503 (1999)CrossRef
35.
Zurück zum Zitat X. Aymerich-Humet, F. Serra-Mestres, J. Millan, A generalized approximation of the Fermi-Dirac integrals. J. Appl. Phys. 54(5), 2850–2851 (1983)CrossRef X. Aymerich-Humet, F. Serra-Mestres, J. Millan, A generalized approximation of the Fermi-Dirac integrals. J. Appl. Phys. 54(5), 2850–2851 (1983)CrossRef
36.
Zurück zum Zitat R. Yan, A. Ourmazd, K.F. Lee, Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron. Devices 39(7), 1704–1710 (1992)CrossRef R. Yan, A. Ourmazd, K.F. Lee, Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron. Devices 39(7), 1704–1710 (1992)CrossRef
37.
Zurück zum Zitat M. Chan, T. Y. Man, J. he, X. Xi, C. Lin, X. Lin, P. K. Ko, A. M. Niknejad, C. Hu, Quasi-2D compact modeling for double-gate MOSFET. WCM Tech. Dig. 108–113 (2004) M. Chan, T. Y. Man, J. he, X. Xi, C. Lin, X. Lin, P. K. Ko, A. M. Niknejad, C. Hu, Quasi-2D compact modeling for double-gate MOSFET. WCM Tech. Dig. 108–113 (2004)
38.
Zurück zum Zitat S. Agrawal, J.G. Fossum, A physical model for fringe capacitance in double-gate MOSFETs with non-abrupt source/drain junctions and gate underlap. IEEE Trans. Electron. Devices 57(5), 1069–1075 (2010)CrossRef S. Agrawal, J.G. Fossum, A physical model for fringe capacitance in double-gate MOSFETs with non-abrupt source/drain junctions and gate underlap. IEEE Trans. Electron. Devices 57(5), 1069–1075 (2010)CrossRef
39.
Zurück zum Zitat S.E. Laux, Techniques for small signal analysis of semiconductor devices. IEEE Trans. Electron. Device 32(10), 2028–2037 (1985)CrossRef S.E. Laux, Techniques for small signal analysis of semiconductor devices. IEEE Trans. Electron. Device 32(10), 2028–2037 (1985)CrossRef
41.
Zurück zum Zitat P. Wu, J. Zhang, L. Zhang, Z. Yu, Channel potential based compact model of double-gate tunneling FETs considering channel length scaling. SISPAD Tech. Dig. (2015) P. Wu, J. Zhang, L. Zhang, Z. Yu, Channel potential based compact model of double-gate tunneling FETs considering channel length scaling. SISPAD Tech. Dig. (2015)
42.
Zurück zum Zitat Y. Taur, J. Wu, J. Min, An analytic model for heterojunction tunnel FETs with exponential barrier. IEEE Trans. Electron. Devices 62(5), 1399–1404 (2015)CrossRef Y. Taur, J. Wu, J. Min, An analytic model for heterojunction tunnel FETs with exponential barrier. IEEE Trans. Electron. Devices 62(5), 1399–1404 (2015)CrossRef
43.
Zurück zum Zitat A. Schenk, Rhyner, R, M. Luisier, C. Bessire, Analysis of Si, InAs and Si-InAs tunnel diodes and tunnel FETs using different transport models. SISPAD Tech. Dig. 263–266 (2011) A. Schenk, Rhyner, R, M. Luisier, C. Bessire, Analysis of Si, InAs and Si-InAs tunnel diodes and tunnel FETs using different transport models. SISPAD Tech. Dig. 263–266 (2011)
Metadaten
Titel
Compact Models of TFETs
verfasst von
Lining Zhang
Mansun Chan
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-31653-6_3

Neuer Inhalt