Skip to main content
Erschienen in: Wireless Personal Communications 2/2021

21.11.2020

Compact Rack Shaped MIMO Dielectric Resonator Antenna with Improved Axial Ratio for UWB Applications

verfasst von: Sachin Kumar Yadav, Amanpreet Kaur, Rajesh Khanna

Erschienen in: Wireless Personal Communications | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a rack shaped two radiator element multiple input multiple output (MIMO) dielectric resonator antenna (DRA) is reported with improved axial ratio (AR) characteristics for ultra-wideband applications. The proposed MIMO antenna structure is implemented with the help of two rectangular shaped radiator elements which are further changed into rack shaped dielectric resonator (DR) that support three modes HEM111, HEM121, and HEM212, at 7.3, 9.3, 10.74 GHz respectively. The approach of rack shaped DRA has improved the transmission coefficient for the UWB range. Inverted T-shaped metallic strip apart from giving elliptically polarized (EP) characteristics also helps in controlling both the axial ratio bandwidth and impedance bandwidth (101.87%). The simulated and measured outcomes validated that the proposed antenna can be utilized for 3.54–10.89 GHz ultra-wideband (UWB) frequency range. The MIMO diversity parameters are implemented as ECC ≤ 0.0059, DG ≥ 9.93 dB, TARC (0, 30, 60, 90, 120, 150, and 180) degrees, GD (0.96 to − 2.1 ns) and CCL (≤ 0.4 except of 8.8–9.6 GHz). All the obtained MIMO antenna parameters are within the acceptable limit and also provides high data rate applications in C and X bands.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Docket, E.T. (2002). Docket 98–153, FCC, Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. Technical Report. Docket, E.T. (2002). Docket 98–153, FCC, Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. Technical Report.
2.
Zurück zum Zitat Luk, K. M., & Leung, K. W. (2003). Dielectric resonator antenna. U. K.: Research Studies Press, UK. Luk, K. M., & Leung, K. W. (2003). Dielectric resonator antenna. U. K.: Research Studies Press, UK.
3.
Zurück zum Zitat Yaduvanshi, R. S., & Parthasarathy, H. (2016). Rectangular dielectric resonator antennas. New Delhi, India: Springer.CrossRef Yaduvanshi, R. S., & Parthasarathy, H. (2016). Rectangular dielectric resonator antennas. New Delhi, India: Springer.CrossRef
4.
Zurück zum Zitat Mongia, R. K., & Bhartia, P. (1994). Dielectric resonator antennas—A review and general design relations for resonant frequency and bandwidth. International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, 4(3), 230–247.CrossRef Mongia, R. K., & Bhartia, P. (1994). Dielectric resonator antennas—A review and general design relations for resonant frequency and bandwidth. International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, 4(3), 230–247.CrossRef
5.
Zurück zum Zitat Pan, Y. M., & Zheng, S. Y. (2015). A low-profile stacked dielectric resonator antenna with high-gain and wide bandwidth. IEEE Antennas and Wireless Propagation Letters, 15, 68–71.CrossRef Pan, Y. M., & Zheng, S. Y. (2015). A low-profile stacked dielectric resonator antenna with high-gain and wide bandwidth. IEEE Antennas and Wireless Propagation Letters, 15, 68–71.CrossRef
6.
Zurück zum Zitat Sharma, A., Sarkar, A., Biswas, A., & Akhtar, M. J. (2018). A-shaped wideband dielectric resonator antenna for wireless communication systems and its MIMO implementation. International Journal of RF and Microwave Computer-Aided Engineering, 28(8), e21402.CrossRef Sharma, A., Sarkar, A., Biswas, A., & Akhtar, M. J. (2018). A-shaped wideband dielectric resonator antenna for wireless communication systems and its MIMO implementation. International Journal of RF and Microwave Computer-Aided Engineering, 28(8), e21402.CrossRef
7.
Zurück zum Zitat Das, G., Sharma, A., & Gangwar, R. K. (2017). Dual feed MIMO cylindrical dielectric resonator antenna with high isolation. Microwave and Optical Technology Letters, 59(7), 1686–1692.CrossRef Das, G., Sharma, A., & Gangwar, R. K. (2017). Dual feed MIMO cylindrical dielectric resonator antenna with high isolation. Microwave and Optical Technology Letters, 59(7), 1686–1692.CrossRef
8.
Zurück zum Zitat Agarwal, A., & Kaur, A. (2017). A dual band stacked aperture coupled antenna array for WLAN applications. Microwave and Optical Technology Letters, 59(3), 648–654.CrossRef Agarwal, A., & Kaur, A. (2017). A dual band stacked aperture coupled antenna array for WLAN applications. Microwave and Optical Technology Letters, 59(3), 648–654.CrossRef
9.
Zurück zum Zitat Das, G., Sharma, A., & Gangwar, R. K. (2018). Triple-band hybrid antenna with integral isolation mechanism for MIMO applications. Microwave and Optical Technology Letters, 60(6), 1482–1491.CrossRef Das, G., Sharma, A., & Gangwar, R. K. (2018). Triple-band hybrid antenna with integral isolation mechanism for MIMO applications. Microwave and Optical Technology Letters, 60(6), 1482–1491.CrossRef
10.
Zurück zum Zitat Abedian, M., Rahim, S. K. A., Fumeaux, C., Danesh, S., Lo, Y. C., & Jamaluddin, M. H. (2017). Compact ultrawideband MIMO dielectric resonator antennas with WLAN band rejection. IET Microwaves, Antennas and Propagation, 11(11), 1524–1529.CrossRef Abedian, M., Rahim, S. K. A., Fumeaux, C., Danesh, S., Lo, Y. C., & Jamaluddin, M. H. (2017). Compact ultrawideband MIMO dielectric resonator antennas with WLAN band rejection. IET Microwaves, Antennas and Propagation, 11(11), 1524–1529.CrossRef
11.
Zurück zum Zitat Das, G., Sharma, A., Gangwar, R. K., & Sharawi, M. S. (2018). Triple-port, two-mode based two element cylindrical dielectric resonator antenna for MIMO applications. Microwave and Optical Technology Letters, 60(6), 1566–1573.CrossRef Das, G., Sharma, A., Gangwar, R. K., & Sharawi, M. S. (2018). Triple-port, two-mode based two element cylindrical dielectric resonator antenna for MIMO applications. Microwave and Optical Technology Letters, 60(6), 1566–1573.CrossRef
12.
Zurück zum Zitat Ahmad Khan, A., Khan, R., Aqeel, S., Ur Rehman Kazim, J., Saleem, J., & Owais, M. K. (2017). Dual-band mimo rectangular dielectric resonator antenna with high port isolation for LTE applications. Microwave and Optical Technology Letters, 59(1), 44–49.CrossRef Ahmad Khan, A., Khan, R., Aqeel, S., Ur Rehman Kazim, J., Saleem, J., & Owais, M. K. (2017). Dual-band mimo rectangular dielectric resonator antenna with high port isolation for LTE applications. Microwave and Optical Technology Letters, 59(1), 44–49.CrossRef
13.
Zurück zum Zitat Chae, S. H., Oh, S. K., & Park, S. O. (2007). Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna. IEEE Antennas and Wireless Propagation Letters, 6, 122–125.CrossRef Chae, S. H., Oh, S. K., & Park, S. O. (2007). Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna. IEEE Antennas and Wireless Propagation Letters, 6, 122–125.CrossRef
14.
Zurück zum Zitat Sahu, N. K., Das, G., & Gangwar, R. K. (2018). Dual polarized triple-band dielectric resonator based hybrid MIMO antenna for WLAN/WiMAX applications. Microwave and Optical Technology Letters, 60(4), 1033–1041.CrossRef Sahu, N. K., Das, G., & Gangwar, R. K. (2018). Dual polarized triple-band dielectric resonator based hybrid MIMO antenna for WLAN/WiMAX applications. Microwave and Optical Technology Letters, 60(4), 1033–1041.CrossRef
15.
Zurück zum Zitat Trivedi, K., & Pujara, D. (2017). Mutual coupling reduction in wideband tree shaped fractal dielectric resonator antenna array using defected ground structure for MIMO applications. Microwave and Optical Technology Letters, 59(11), 2735–2742.CrossRef Trivedi, K., & Pujara, D. (2017). Mutual coupling reduction in wideband tree shaped fractal dielectric resonator antenna array using defected ground structure for MIMO applications. Microwave and Optical Technology Letters, 59(11), 2735–2742.CrossRef
16.
Zurück zum Zitat Nasir, J., Jamaluddin, M. H., Khalily, M., Kamarudin, M. R., Ullah, I., & Selvaraju, R. (2015). A reduced size dual port MIMO DRA with high isolation for 4G applications. International Journal of RF and Microwave Computer-Aided Engineering, 25(6), 495–501.CrossRef Nasir, J., Jamaluddin, M. H., Khalily, M., Kamarudin, M. R., Ullah, I., & Selvaraju, R. (2015). A reduced size dual port MIMO DRA with high isolation for 4G applications. International Journal of RF and Microwave Computer-Aided Engineering, 25(6), 495–501.CrossRef
17.
Zurück zum Zitat Wu, Y., Ding, K., Zhang, B., Li, J., Wu, D., & Wang, K. (2018). Design of a compact UWB MIMO antenna without decoupling structure. International Journal of Antennas and Propagation, 2018, 1–8. Wu, Y., Ding, K., Zhang, B., Li, J., Wu, D., & Wang, K. (2018). Design of a compact UWB MIMO antenna without decoupling structure. International Journal of Antennas and Propagation, 2018, 1–8.
18.
Zurück zum Zitat Yadav, D., Abegaonkar, M. P., Koul, S. K., Tiwari, V. N., & Bhatnagar, D. (2018). Two element band-notched UWB MIMO antenna with high and uniform isolation. Progress in Electromagnetics Research, 63, 119–129.CrossRef Yadav, D., Abegaonkar, M. P., Koul, S. K., Tiwari, V. N., & Bhatnagar, D. (2018). Two element band-notched UWB MIMO antenna with high and uniform isolation. Progress in Electromagnetics Research, 63, 119–129.CrossRef
19.
Zurück zum Zitat Lin, H., Song, Z., Wang, X., & Gao, H. (2017). An improved antenna group delay measurement method using a three-antenna extrapolation technique. Radioengineering, 26(3), 675–681.CrossRef Lin, H., Song, Z., Wang, X., & Gao, H. (2017). An improved antenna group delay measurement method using a three-antenna extrapolation technique. Radioengineering, 26(3), 675–681.CrossRef
20.
Zurück zum Zitat Yadav, S. K., Kaur, A., Khanna, R., et al. (2020). An ultra wideband “OM” shaped DRA with a defected ground structure and dual polarization properties for 4G/5G wireless communications. International Journal of RF and Microwave Computer-Aided Engineering, 30(8), e22327.CrossRef Yadav, S. K., Kaur, A., Khanna, R., et al. (2020). An ultra wideband “OM” shaped DRA with a defected ground structure and dual polarization properties for 4G/5G wireless communications. International Journal of RF and Microwave Computer-Aided Engineering, 30(8), e22327.CrossRef
Metadaten
Titel
Compact Rack Shaped MIMO Dielectric Resonator Antenna with Improved Axial Ratio for UWB Applications
verfasst von
Sachin Kumar Yadav
Amanpreet Kaur
Rajesh Khanna
Publikationsdatum
21.11.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07887-x

Weitere Artikel der Ausgabe 2/2021

Wireless Personal Communications 2/2021 Zur Ausgabe

Neuer Inhalt