Skip to main content
Erschienen in:

16.04.2024 | Technical Paper

Compact stick–slip piezoelectric rotary motor with reduced undesired backward motion

verfasst von: Byeongkyu Lim, Namseon Jang, Donghyun Hwang

Erschienen in: Microsystem Technologies | Ausgabe 8/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We develop a rotary motor to reduce backward motion in stick–slip with an active clamp mechanism. Backward motion refers to the undesired movement observed when operating a rotary stick–slip motor powered by a piezoelectric actuator under actual conditions, where the rotor rotates in the opposite direction to the intended rotation. This could cause imprecision and inaccurate motion. The conventional stick–slip motor relies on contact with the rotor to induce rotation. The proposed active clamp mechanism adjusts the contact distance with the rotor, ensuring contact is maintained only when the rotor is rotating. This helps reduce backward motion. Additionally, implementing this mechanism using the conventional method requires one stick–slip module for rotation and two inchworm drive modules for clamping. In contrast, the proposed mechanism consists of a single module each for the driving actuator and clamping actuator. A preliminary model with a dimension of 34 × 27 mm was constructed for experimentation. Through the experiments, it was confirmed that the proportion of backward motion relative to the initial movement in one step decreased by approximately 20%. Furthermore, with the reduction in backward motion, the rotational displacement per step was confirmed to improve by about twice, increasing from 17 to 33 millidegrees.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barth O et al (2000) Harmonic piezodrive—miniaturized servo motor. Mechatronics 10(4–5):545–554CrossRef Barth O et al (2000) Harmonic piezodrive—miniaturized servo motor. Mechatronics 10(4–5):545–554CrossRef
Zurück zum Zitat Berman AD et al (1996) Origin and characterization of different stick-slip friction mechanisms. Langmuir 12(19):4559–4563CrossRef Berman AD et al (1996) Origin and characterization of different stick-slip friction mechanisms. Langmuir 12(19):4559–4563CrossRef
Zurück zum Zitat Breguet J, Clavel R (1998) Stick and slip actuators: design, control, performances and applications. In: Proceedings of the MHS’98, Nagoya, Japan, pp 89–95 Breguet J, Clavel R (1998) Stick and slip actuators: design, control, performances and applications. In: Proceedings of the MHS’98, Nagoya, Japan, pp 89–95
Zurück zum Zitat Cau N et al (2018) Design and testing of a novel piezoelectric rotary motor based on improved deformation wave precession mechanism. In: Proceedings of the ACTUATOR 2018, Bremen, Germany, pp 1–4 Cau N et al (2018) Design and testing of a novel piezoelectric rotary motor based on improved deformation wave precession mechanism. In: Proceedings of the ACTUATOR 2018, Bremen, Germany, pp 1–4
Zurück zum Zitat Duong K et al (1996) Design and performance of a rotary motor driven by piezoelectric stack actuators. Jpn J Appl Phys 35(12A):6334–6341CrossRef Duong K et al (1996) Design and performance of a rotary motor driven by piezoelectric stack actuators. Jpn J Appl Phys 35(12A):6334–6341CrossRef
Zurück zum Zitat Fan H et al (2019) Active suppression of the backward motion in a parasitic motion principle (PMP) piezoelectric actuator. Smart Mater Struct 28(12):125006CrossRef Fan H et al (2019) Active suppression of the backward motion in a parasitic motion principle (PMP) piezoelectric actuator. Smart Mater Struct 28(12):125006CrossRef
Zurück zum Zitat Hunstig M (2017) Piezoelectric inertia motors—a critical review of history, concepts, design, applications, and perspectives. Actuators 6(7):6010007 Hunstig M (2017) Piezoelectric inertia motors—a critical review of history, concepts, design, applications, and perspectives. Actuators 6(7):6010007
Zurück zum Zitat Hwang D et al (2011) Robust design and performance verification of an in-plane xytheta micropositioning stage. IEEE Trans Nanotechnol 10(6):1412–1423CrossRef Hwang D et al (2011) Robust design and performance verification of an in-plane xytheta micropositioning stage. IEEE Trans Nanotechnol 10(6):1412–1423CrossRef
Zurück zum Zitat Kim SC et al (1999) Precise rotary motor by inchworm motion using dual wrap belts. Rev Sci Instrum 70(5):2546–2550CrossRef Kim SC et al (1999) Precise rotary motor by inchworm motion using dual wrap belts. Rev Sci Instrum 70(5):2546–2550CrossRef
Zurück zum Zitat Lee SW et al (2007) Development of a piezoelectric multiaxis stage based on stick-and-clamping actuation technology. Smart Mater Struct 16(6):2354–2367CrossRef Lee SW et al (2007) Development of a piezoelectric multiaxis stage based on stick-and-clamping actuation technology. Smart Mater Struct 16(6):2354–2367CrossRef
Zurück zum Zitat Ling MX, Cao JY, Jiang Z, Lin J (2017) Modular kinematics and statics modeling for precision positioning stage. Mech Mach Theory 107:274–282CrossRef Ling MX, Cao JY, Jiang Z, Lin J (2017) Modular kinematics and statics modeling for precision positioning stage. Mech Mach Theory 107:274–282CrossRef
Zurück zum Zitat Mashimo T (2016) Micro ultrasonic motor using a cube with a side length of 0.5 mm. IEEE-ASME Trans Mech 21(2):1189–1192CrossRef Mashimo T (2016) Micro ultrasonic motor using a cube with a side length of 0.5 mm. IEEE-ASME Trans Mech 21(2):1189–1192CrossRef
Zurück zum Zitat Morita T (2003) Miniature piezoelectric motors. Sens Actuat A-Phys 103(3):291–300CrossRef Morita T (2003) Miniature piezoelectric motors. Sens Actuat A-Phys 103(3):291–300CrossRef
Zurück zum Zitat Morita T et al (1999) A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator. IEEE Trans Ultrason Ferr 46(6):1439–1445CrossRef Morita T et al (1999) A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator. IEEE Trans Ultrason Ferr 46(6):1439–1445CrossRef
Zurück zum Zitat Ouyang PR et al (2008) Micromotion devices technology: the state of arts review. Int J Adv Manuf Tech 38(5–6):463–478CrossRef Ouyang PR et al (2008) Micromotion devices technology: the state of arts review. Int J Adv Manuf Tech 38(5–6):463–478CrossRef
Zurück zum Zitat Pertsch P (2018) Piezoelectric actuator applications—status 2018. In: Proceedings of the ACTUATOR 2018, Bremen, Germany, pp 1–7 Pertsch P (2018) Piezoelectric actuator applications—status 2018. In: Proceedings of the ACTUATOR 2018, Bremen, Germany, pp 1–7
Zurück zum Zitat Spanner K, Koc B (2016) Piezoelectric motors, an overview. Actuators 5(6):5010006 Spanner K, Koc B (2016) Piezoelectric motors, an overview. Actuators 5(6):5010006
Zurück zum Zitat Wang L et al (2016) A friction regulation hybrid driving method for backward motion restraint of the smooth impact drive mechanism. Smart Mater Struct 25(8):085033CrossRef Wang L et al (2016) A friction regulation hybrid driving method for backward motion restraint of the smooth impact drive mechanism. Smart Mater Struct 25(8):085033CrossRef
Zurück zum Zitat Wang SP et al (2017) Design, analysis and experimental performance of a bionic piezoelectric rotary actuator. J Bionic Eng 14(2):348–355MathSciNetCrossRef Wang SP et al (2017) Design, analysis and experimental performance of a bionic piezoelectric rotary actuator. J Bionic Eng 14(2):348–355MathSciNetCrossRef
Zurück zum Zitat Yang Z et al (2020) On the suppression of the backward motion of a piezo-driven precision positioning platform designed by the parasitic motion principle. IEEE Trans Ind Electron 67(5):3870–3878CrossRef Yang Z et al (2020) On the suppression of the backward motion of a piezo-driven precision positioning platform designed by the parasitic motion principle. IEEE Trans Ind Electron 67(5):3870–3878CrossRef
Zurück zum Zitat Zhang Y et al (2006) Development of a two-degree-of-freedom piezoelectric rotary-linear actuator with high driving force and unlimited linear movement. Rev Sci Instrum 77(3):035112CrossRef Zhang Y et al (2006) Development of a two-degree-of-freedom piezoelectric rotary-linear actuator with high driving force and unlimited linear movement. Rev Sci Instrum 77(3):035112CrossRef
Zurück zum Zitat Zhu J et al (2018) A novel method of stick-slip vibration composite driving for improving the step displacement. Smart Mater Struct 27(11):117004CrossRef Zhu J et al (2018) A novel method of stick-slip vibration composite driving for improving the step displacement. Smart Mater Struct 27(11):117004CrossRef
Zurück zum Zitat Zsurzsan T et al (2014) Investigating the electromechanical coupling in piezoelectric actuator drive motor under heavy load. In: Proceedings of the 2014 PEAC, Shanghai, China, pp 538–542. Zsurzsan T et al (2014) Investigating the electromechanical coupling in piezoelectric actuator drive motor under heavy load. In: Proceedings of the 2014 PEAC, Shanghai, China, pp 538–542.
Metadaten
Titel
Compact stick–slip piezoelectric rotary motor with reduced undesired backward motion
verfasst von
Byeongkyu Lim
Namseon Jang
Donghyun Hwang
Publikationsdatum
16.04.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2024
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-024-05654-7