Skip to main content

2025 | OriginalPaper | Buchkapitel

Comparative Analysis of Malware Detection Response Times Across Android Versions: An Emphasis on the “Hoverwatch” Application

verfasst von : Chiemela Ndukwe, Elaheh Homayounvala, Hassan Kazemian, Istteffanny Araujo

Erschienen in: Innovative Computing and Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As Android-based smartphones become increasingly prevalent in our digital age, they also become inviting targets for malicious applications. Our research demystifies malware detection, with a special focus on response times across multiple Android versions. We began by examining the vast influence of Android and the need for robust malware detection in today’s market. To understand the threat landscape, we investigated application-based threats and their impact on users and provided an encompassing review of the current malware detection methodologies, which include static, dynamic, and hybrid techniques. Our study centres around comprehensive tests conducted on distinct Android emulators, with the intent to measure malware detection response time. We used a known malicious app, “Hoverwatch,” for this experiment. Our findings reveal notable disparities in detection times, emphasizing the need for constant advancements in defence systems and in a number of test cases the need for improvements in real-time detection capabilities. This research offers insights into the effectiveness of current Android malware detection methods, stressing response times. We underscore the necessity for regular updates and system enhancements to combat the evolving threat environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Chang, Y., & Wang, S. (2016). The concept of attack scenarios and its applications in Android malware detection. In 2016 IEEE 18th International Conference on High Performance Computing and Communications (pp. 1485–1492). IEEE. Chang, Y., & Wang, S. (2016). The concept of attack scenarios and its applications in Android malware detection. In 2016 IEEE 18th International Conference on High Performance Computing and Communications (pp. 1485–1492). IEEE.
3.
Zurück zum Zitat Al Ali, M., Svetinovic, D., Aung, Z., & Lukman, S. (2017). Malware detection in android mobile platform using machine learning algorithms. In 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions)(ICTUS) (pp. 763–768). IEEE. Al Ali, M., Svetinovic, D., Aung, Z., & Lukman, S. (2017). Malware detection in android mobile platform using machine learning algorithms. In 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions)(ICTUS) (pp. 763–768). IEEE.
4.
Zurück zum Zitat Lei, T., Qin, Z., Wang, Z., Li, Q., & Ye, D. (2019). Evedroid: Event-aware android malware detection against model degrading for IoT devices. IEEE Internet of Things Journal, 6(4), 6668–6680.CrossRef Lei, T., Qin, Z., Wang, Z., Li, Q., & Ye, D. (2019). Evedroid: Event-aware android malware detection against model degrading for IoT devices. IEEE Internet of Things Journal, 6(4), 6668–6680.CrossRef
5.
Zurück zum Zitat Kim, T., Kang, B., Rho, M., Sezer, S., & Im, E. G. (2018). A multimodal deep learning method for android malware detection using various features. IEEE Transactions on Information Forensics and Security, 14(3), 773–788.CrossRef Kim, T., Kang, B., Rho, M., Sezer, S., & Im, E. G. (2018). A multimodal deep learning method for android malware detection using various features. IEEE Transactions on Information Forensics and Security, 14(3), 773–788.CrossRef
6.
Zurück zum Zitat Du, Y., Wang, X., & Wang, J. (2015). A static android malicious code detection method based on multi-source fusion. Security Communication Networks, 8, 3238–3246.CrossRef Du, Y., Wang, X., & Wang, J. (2015). A static android malicious code detection method based on multi-source fusion. Security Communication Networks, 8, 3238–3246.CrossRef
7.
Zurück zum Zitat Garcia, J., Hammad, M., & Malek, S. (2018). Lightweight, obfuscation-resilient detection and family identification of android malware. In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE) (p. 497). IEEE. Garcia, J., Hammad, M., & Malek, S. (2018). Lightweight, obfuscation-resilient detection and family identification of android malware. In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE) (p. 497). IEEE.
8.
Zurück zum Zitat Badhani, S., & Muttoo, S. K. (2018). Comparative analysis of pre-and postclassification ensemble methods for android malware detection. In International Conference on Advances in Computing and Data Science (pp. 442–453). Springer. Badhani, S., & Muttoo, S. K. (2018). Comparative analysis of pre-and postclassification ensemble methods for android malware detection. In International Conference on Advances in Computing and Data Science (pp. 442–453). Springer.
9.
Zurück zum Zitat Wang, W., Li, Y., Wang, X., Liu, J., & Zhang, X. (2018). Detecting android malicious apps and categorizing benign apps with ensemble of classifiers. Future Generation Computer Systems, 78, 987–994.CrossRef Wang, W., Li, Y., Wang, X., Liu, J., & Zhang, X. (2018). Detecting android malicious apps and categorizing benign apps with ensemble of classifiers. Future Generation Computer Systems, 78, 987–994.CrossRef
10.
Zurück zum Zitat Gheorghe, L., Marin, B., Gibson, G., Mogosanu, L., Deaconescu, R., Voiculescu, V. G., & Carabas, M. (2015). Smart malware detection on Android. Security and Communication Networks, 8(18), 4254–4272.CrossRef Gheorghe, L., Marin, B., Gibson, G., Mogosanu, L., Deaconescu, R., Voiculescu, V. G., & Carabas, M. (2015). Smart malware detection on Android. Security and Communication Networks, 8(18), 4254–4272.CrossRef
11.
Zurück zum Zitat Painter, N., & Kadhiwala, B. (2018). Machine-learning-based android malware detection techniques—A comparative analysis. In Information and Communication Technology for Sustainable Development (pp. 181–190). Springer. Painter, N., & Kadhiwala, B. (2018). Machine-learning-based android malware detection techniques—A comparative analysis. In Information and Communication Technology for Sustainable Development (pp. 181–190). Springer.
12.
Zurück zum Zitat Chen, S., Xue, M., Tang, Z., Xu, L., & Zhu, H. (2016). Stormdroid: A streaminglized machine learning-based system for detecting android malware. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (pp. 377–388). Chen, S., Xue, M., Tang, Z., Xu, L., & Zhu, H. (2016). Stormdroid: A streaminglized machine learning-based system for detecting android malware. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (pp. 377–388).
Metadaten
Titel
Comparative Analysis of Malware Detection Response Times Across Android Versions: An Emphasis on the “Hoverwatch” Application
verfasst von
Chiemela Ndukwe
Elaheh Homayounvala
Hassan Kazemian
Istteffanny Araujo
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_8