Skip to main content

2025 | OriginalPaper | Buchkapitel

Comparative Analysis of Neural Network Models for Error Probability Prediction in Vehicular Communication

verfasst von : P. Reshma, Jatin Gautam, V. Sudha

Erschienen in: Proceedings of Third International Conference on Computational Electronics for Wireless Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reliable data transfer is a tedious task for various applications that involve users in motion. In vehicular communication systems, for reliable and seamless data transfer an accurate estimation strategy is needed. The principal objective involves construction of the predictive models that can estimate error probabilities on parameters like signal strengths, timestamps, and sender identification outcomes. To establish a proper strategy for vehicle scenarios while maintaining the system’s effectiveness, we present an analysis of our system with error probabilities, exploring the relationship between signal strength, neural network (NN) architectures, and error prediction accuracy. Data generated is used to simulate communication messages. Furthermore, this paper boards to calculate the effectiveness of different NN architectures, including single and multi-layer perceptrons, interpreting key relations embedded in data and providing precise error probability predictions. Through a series of insights, we observed signal strength and NN impact on error predictions. Our analysis improves the complex error pattern occurrences and identifies the most suitable architecture for accurate predictions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cheng X, Yang L, Shen X (2015) D2d for intelligent transportation systems: a feasibility study. IEEE Trans. Intell. Transport. Syst. 16:1784–1793CrossRef Cheng X, Yang L, Shen X (2015) D2d for intelligent transportation systems: a feasibility study. IEEE Trans. Intell. Transport. Syst. 16:1784–1793CrossRef
2.
Zurück zum Zitat Wang ZJ, Turko R, Shaikh O, Park H, Das N, Hohman F, Kahng M, Chau DH (2020) CNN explainer: learning convolutional neural networks with interactive visualization. arXiv:2004.15004 Wang ZJ, Turko R, Shaikh O, Park H, Das N, Hohman F, Kahng M, Chau DH (2020) CNN explainer: learning convolutional neural networks with interactive visualization. arXiv:​2004.​15004
4.
Zurück zum Zitat Ali ES, Hasan MK, Hassan R, Saeed RA, Hassan MB, Islam S, Nafi NS, Bevinakoppa S (2021) Machine learning technologies for secure vehicular communication in internet of vehicles: recent advances and applications. Secur Commun Netw 2021, Article ID 8868355, 23 p. https://doi.org/10.1155/2021/8868355 Ali ES, Hasan MK, Hassan R, Saeed RA, Hassan MB, Islam S, Nafi NS, Bevinakoppa S (2021) Machine learning technologies for secure vehicular communication in internet of vehicles: recent advances and applications. Secur Commun Netw 2021, Article ID 8868355, 23 p. https://​doi.​org/​10.​1155/​2021/​8868355
5.
Zurück zum Zitat 3GPP, Study on LTE-Based V2X Services, Technical report (TR) 36.885, 3rd Generation Partnership Project (3GPP), 06 2016). URL, version 14.0.0 3GPP, Study on LTE-Based V2X Services, Technical report (TR) 36.885, 3rd Generation Partnership Project (3GPP), 06 2016). URL, version 14.0.0
7.
Zurück zum Zitat Stadler C, Flamm X, Gruber T, Djanatliev A, German R, Eckhoff D (2017) A stochastic V2V LOS/NLOS model using neural networks for hardware-in-the-loop testing. In: 2017 IEEE vehicular networking conference (VNC), Turin, Italy, pp 195–202. https://doi.org/10.1109/VNC.2017.8275597 Stadler C, Flamm X, Gruber T, Djanatliev A, German R, Eckhoff D (2017) A stochastic V2V LOS/NLOS model using neural networks for hardware-in-the-loop testing. In: 2017 IEEE vehicular networking conference (VNC), Turin, Italy, pp 195–202. https://​doi.​org/​10.​1109/​VNC.​2017.​8275597
9.
Zurück zum Zitat Thsehla E (2023) Deep learning based parametric model for V2V communication system. Int J Appl Sci Res Rev 10:30 Thsehla E (2023) Deep learning based parametric model for V2V communication system. Int J Appl Sci Res Rev 10:30
12.
Zurück zum Zitat Dakić A, Rainer B, Hofer M, Zemen T (2023) Frame error rate prediction for non-stationary wireless vehicular communication links. In: 2023 IEEE 34th annual international symposium on personal, indoor and mobile radio communications (PIMRC), Toronto, ON, Canada, pp 1–6. https://doi.org/10.1109/PIMRC56721.2023.10293870 Dakić A, Rainer B, Hofer M, Zemen T (2023) Frame error rate prediction for non-stationary wireless vehicular communication links. In: 2023 IEEE 34th annual international symposium on personal, indoor and mobile radio communications (PIMRC), Toronto, ON, Canada, pp 1–6. https://​doi.​org/​10.​1109/​PIMRC56721.​2023.​10293870
13.
Zurück zum Zitat Aljeri N, Boukerche A (2020) ADVICE-LOC: an adaptive vehicle-centric LOCation management scheme for intelligent connected cars. Ad Hoc Netw 107:102–223CrossRef Aljeri N, Boukerche A (2020) ADVICE-LOC: an adaptive vehicle-centric LOCation management scheme for intelligent connected cars. Ad Hoc Netw 107:102–223CrossRef
14.
Zurück zum Zitat Krause A, Palaios A, Kumar A, Schulz P, Fettweis G (2023) an improved data collection framework for enabling ML-based QoS prediction for vehicular communication. In: WSA & SCC 2023; 26th international ITG workshop on smart antennas and 13th conference on systems, communications, and coding, Braunschweig, Germany, pp 1–6 Krause A, Palaios A, Kumar A, Schulz P, Fettweis G (2023) an improved data collection framework for enabling ML-based QoS prediction for vehicular communication. In: WSA & SCC 2023; 26th international ITG workshop on smart antennas and 13th conference on systems, communications, and coding, Braunschweig, Germany, pp 1–6
18.
Zurück zum Zitat Sangare M, Banerjee S, Muhlethaler P, Bouzefrane S (2018) Predicting vehicles’ positions using roadside units: a machine-learning approach. In: 2018 IEEE conference on standards for communications and networking (CSCN), Paris, France, pp 1–6. https://doi.org/10.1109/CSCN.2018.8581850 Sangare M, Banerjee S, Muhlethaler P, Bouzefrane S (2018) Predicting vehicles’ positions using roadside units: a machine-learning approach. In: 2018 IEEE conference on standards for communications and networking (CSCN), Paris, France, pp 1–6. https://​doi.​org/​10.​1109/​CSCN.​2018.​8581850
Metadaten
Titel
Comparative Analysis of Neural Network Models for Error Probability Prediction in Vehicular Communication
verfasst von
P. Reshma
Jatin Gautam
V. Sudha
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1943-3_19