Skip to main content

2020 | OriginalPaper | Buchkapitel

Comparative Analysis of Privacy Preserving Approaches for Collaborative Data Processing

verfasst von : Urvashi Solanki, Bintu Kadhiwala

Erschienen in: Intelligent Communication Technologies and Virtual Mobile Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Data collection by public and private organizations is increasing for extracting hidden knowledge from it that may be used for assisting decision making process. Moreover, availability of high speed internet and sophisticated data mining tools make sharing of this collected data across various organizations possible. As a consequence, these organizations may share and combine their datasets to retrieve the improved result from the combined data using collaborative data processing. Sharing of such data as it is between collaborative organizations may compromise individual’s privacy as the collected data may contain sensitive information about individuals in its original form. To address this challenge, two main categories of privacy preserving approaches viz. the non-cryptography based approach and the cryptography based approach can be utilized. This paper aims to discuss an insight of these approaches and to highlight the parametric comparison.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen, B.C., Kifer, D., Lefevre, K., Machanavajjhala, A.: Privacy-preserving data publishing. Found. Trends Databases 2(1–2), 1–167 (2009)CrossRef Chen, B.C., Kifer, D., Lefevre, K., Machanavajjhala, A.: Privacy-preserving data publishing. Found. Trends Databases 2(1–2), 1–167 (2009)CrossRef
2.
Zurück zum Zitat Ciriani, V., Di Vimercati, S.D.C., Foresti, S., Samarati, P.: k-anonymous data mining: a survey. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining: Models and Algorithms, pp. 105–136. Springer, Boston (2008)CrossRef Ciriani, V., Di Vimercati, S.D.C., Foresti, S., Samarati, P.: k-anonymous data mining: a survey. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining: Models and Algorithms, pp. 105–136. Springer, Boston (2008)CrossRef
4.
Zurück zum Zitat Zhan, Z.: Privacy-Preserving Collaborative Data Mining. Ph.D thesis, University of Ottawa, Canada (2006) Zhan, Z.: Privacy-Preserving Collaborative Data Mining. Ph.D thesis, University of Ottawa, Canada (2006)
5.
Zurück zum Zitat Abbas, A., Khan, S.: A review on the state-of-the-art privacy-preserving approaches in e-health clouds. J. Biomed. Health Inf. IEEE 18(4), 1431–1441 (2014)CrossRef Abbas, A., Khan, S.: A review on the state-of-the-art privacy-preserving approaches in e-health clouds. J. Biomed. Health Inf. IEEE 18(4), 1431–1441 (2014)CrossRef
6.
Zurück zum Zitat Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Lenz, R., Longhurst, J., Nordholt, E.S., Seri, G., Wolf, P.: Handbook on Statistical Disclosure Control, ESSnet on Statistical Disclosure Control, version 1.0 (2006) Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Lenz, R., Longhurst, J., Nordholt, E.S., Seri, G., Wolf, P.: Handbook on Statistical Disclosure Control, ESSnet on Statistical Disclosure Control, version 1.0 (2006)
7.
Zurück zum Zitat Pedersen, T.B., Saygin, Y. and Savas, E.: Secret Sharing vs. Encryption-Based Techniques for Privacy Preserving Data Mining (2007) Pedersen, T.B., Saygin, Y. and Savas, E.: Secret Sharing vs. Encryption-Based Techniques for Privacy Preserving Data Mining (2007)
8.
Zurück zum Zitat Das, K.: Privacy preserving distributed data mining based on multi-objective optimization and algorithmic game theory. Ph.D thesis, University of Maryland, Baltimore County (2009) Das, K.: Privacy preserving distributed data mining based on multi-objective optimization and algorithmic game theory. Ph.D thesis, University of Maryland, Baltimore County (2009)
9.
Zurück zum Zitat Fung, B., Wang, K., Chen, R., Yu, P.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. ACM 42(4), 1–53 (2010). Article 14CrossRef Fung, B., Wang, K., Chen, R., Yu, P.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. ACM 42(4), 1–53 (2010). Article 14CrossRef
10.
Zurück zum Zitat Aldeen, Y.A.A.S., Salleh, M., Razzaque, M.A.: A comprehensive review on privacy preserving data mining. SpringerPlus 4(1), 694 (2015)CrossRef Aldeen, Y.A.A.S., Salleh, M., Razzaque, M.A.: A comprehensive review on privacy preserving data mining. SpringerPlus 4(1), 694 (2015)CrossRef
11.
Zurück zum Zitat Wang, J., Luo, Y., Zhao, Y., Le, J.: A survey on privacy preserving data mining. In: First International Workshop on Database Technology and Applications, pp. 111–114. IEEE (2009) Wang, J., Luo, Y., Zhao, Y., Le, J.: A survey on privacy preserving data mining. In: First International Workshop on Database Technology and Applications, pp. 111–114. IEEE (2009)
12.
Zurück zum Zitat Dalenius, T.: Finding a needle in a haystack - or identifying anonymous census record. J. Official Stat. 2(3), 329–336 (1986) Dalenius, T.: Finding a needle in a haystack - or identifying anonymous census record. J. Official Stat. 2(3), 329–336 (1986)
13.
Zurück zum Zitat Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)CrossRef Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)CrossRef
14.
Zurück zum Zitat Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: privacy beyond k-anonymity. In: Proceedings of the 22nd International Conference on Data Engineering (ICDE 2006), p. 24 (2006) Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: privacy beyond k-anonymity. In: Proceedings of the 22nd International Conference on Data Engineering (ICDE 2006), p. 24 (2006)
15.
Zurück zum Zitat Aggarwal, C.C., Yu, P.S.: On static and dynamic methods for condensation-based privacy-preserving data mining. In: ACM Transactions on Database Systems (TODS), vol. 33, no. 1 (2008)CrossRef Aggarwal, C.C., Yu, P.S.: On static and dynamic methods for condensation-based privacy-preserving data mining. In: ACM Transactions on Database Systems (TODS), vol. 33, no. 1 (2008)CrossRef
16.
Zurück zum Zitat Chen, K., Liu, L.: Privacy preserving data classification with rotation perturbation. In: Fifth IEEE International Conference on Data Mining (ICDM 2005) (2005) Chen, K., Liu, L.: Privacy preserving data classification with rotation perturbation. In: Fifth IEEE International Conference on Data Mining (ICDM 2005) (2005)
17.
Zurück zum Zitat Mivule, K.: Utilizing noise addition for data privacy, an overview. In: International Conference on Information and Knowledge Engineering, Las Vegas, USA, pp. 65–71 (2012) Mivule, K.: Utilizing noise addition for data privacy, an overview. In: International Conference on Information and Knowledge Engineering, Las Vegas, USA, pp. 65–71 (2012)
18.
Zurück zum Zitat Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the 19th ACM SIGMOD Conference on Management of Data, vol. 29, no. 2, pp. 439–450. ACM (2000) Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the 19th ACM SIGMOD Conference on Management of Data, vol. 29, no. 2, pp. 439–450. ACM (2000)
19.
Zurück zum Zitat Aggarwal, C.C., Philip, S.Y.: A survey of randomization methods for privacy-preserving data mining. In: Aggarwal, C.C., Yu, P.S. (eds.) privacy-preserving data mining. Advances in Database Systems, vol. 34, pp. 137–156. Springer, Boston (2008)CrossRef Aggarwal, C.C., Philip, S.Y.: A survey of randomization methods for privacy-preserving data mining. In: Aggarwal, C.C., Yu, P.S. (eds.) privacy-preserving data mining. Advances in Database Systems, vol. 34, pp. 137–156. Springer, Boston (2008)CrossRef
20.
Zurück zum Zitat Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 37–48 (2005) Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 37–48 (2005)
21.
Zurück zum Zitat Xu, L., Jiang, C., Wang, J., Yuan, J., Ren, Y.: Information security in big data: privacy and data mining. IEEE Access 2, 1149–1176 (2014)CrossRef Xu, L., Jiang, C., Wang, J., Yuan, J., Ren, Y.: Information security in big data: privacy and data mining. IEEE Access 2, 1149–1176 (2014)CrossRef
22.
Zurück zum Zitat Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE (1986) Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE (1986)
23.
Zurück zum Zitat Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy preserving distributed data mining. ACM SIGKDD Explor. Newsl. 4(2), 28–34 (2002)CrossRef Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy preserving distributed data mining. ACM SIGKDD Explor. Newsl. 4(2), 28–34 (2002)CrossRef
24.
Zurück zum Zitat Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confidentiality 1(1), 59–98 (2009) Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confidentiality 1(1), 59–98 (2009)
25.
Zurück zum Zitat Ge, X., Yan, L., Zhu, J., Shi, W.: Privacy-preserving distributed association rule mining based on the secret sharing technique. In: 2nd International Conference on Software Engineering and Data Mining (SEDM), pp. 345–350. IEEE (2010) Ge, X., Yan, L., Zhu, J., Shi, W.: Privacy-preserving distributed association rule mining based on the secret sharing technique. In: 2nd International Conference on Software Engineering and Data Mining (SEDM), pp. 345–350. IEEE (2010)
27.
Zurück zum Zitat Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, vol. 48, pp. 313–317 (1979) Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, vol. 48, pp. 313–317 (1979)
28.
Zurück zum Zitat Zhan, J., Blosser, G., Yang, C., Singh, L.: Privacy-preserving collaborative social networks. In: International Conference on Intelligence and Security Informatics, pp. 114–125. Springer, Heidelberg (2008)CrossRef Zhan, J., Blosser, G., Yang, C., Singh, L.: Privacy-preserving collaborative social networks. In: International Conference on Intelligence and Security Informatics, pp. 114–125. Springer, Heidelberg (2008)CrossRef
29.
Zurück zum Zitat Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)MathSciNet Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)MathSciNet
30.
Zurück zum Zitat Yang, Z., Zhong, S., Wright, R.N.: Privacy preserving classification of customer data without loss of accuracy. In: Proceedings of the 5th SIAM International Conference on Data Mining, pp. 92–102 (2005) Yang, Z., Zhong, S., Wright, R.N.: Privacy preserving classification of customer data without loss of accuracy. In: Proceedings of the 5th SIAM International Conference on Data Mining, pp. 92–102 (2005)
31.
Zurück zum Zitat Yi, X., Paulet, R., Bertino, E.: Homomorphic Encryption and Applications, vol. 3 (2014)MATH Yi, X., Paulet, R., Bertino, E.: Homomorphic Encryption and Applications, vol. 3 (2014)MATH
32.
Zurück zum Zitat Burnett, L., Barlow-Stewart, K., Proos, A.L., Aizenberg, H.: The “GeneTrustee”: a universal identification system that ensures privacy and confidentiality for human genetic databases. J. Law Med. 10(4), 506–513 (2003) Burnett, L., Barlow-Stewart, K., Proos, A.L., Aizenberg, H.: The “GeneTrustee”: a universal identification system that ensures privacy and confidentiality for human genetic databases. J. Law Med. 10(4), 506–513 (2003)
33.
Zurück zum Zitat Cox, L.H.: Suppression methodology and statistical disclosure control. J. Am. Stat. Assoc. 75(370), 377–385 (1980)CrossRef Cox, L.H.: Suppression methodology and statistical disclosure control. J. Am. Stat. Assoc. 75(370), 377–385 (1980)CrossRef
34.
Zurück zum Zitat Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(5), 571–588 (2002)MathSciNetCrossRef Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(5), 571–588 (2002)MathSciNetCrossRef
35.
Zurück zum Zitat Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (Abstract). In: Proceedings of the Seventeenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 98), vol. 98, p. 188 (1998) Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (Abstract). In: Proceedings of the Seventeenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 98), vol. 98, p. 188 (1998)
36.
Zurück zum Zitat Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and specialization, Technical report SRI-CSL-98-04, SRI Intl., pp. 101–132 (1998) Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and specialization, Technical report SRI-CSL-98-04, SRI Intl., pp. 101–132 (1998)
37.
Zurück zum Zitat Domingo-Ferrer, J., Torra, V.: A critique of k-anonymity and some of its enhancements. In: Third International Conference on Availability, Reliability and Security, pp. 990–993. IEEE (2008) Domingo-Ferrer, J., Torra, V.: A critique of k-anonymity and some of its enhancements. In: Third International Conference on Availability, Reliability and Security, pp. 990–993. IEEE (2008)
38.
Zurück zum Zitat Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: 23rd International Conference on Data Engineering (ICDE 2007), pp. 106–115. IEEE (2007) Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: 23rd International Conference on Data Engineering (ICDE 2007), pp. 106–115. IEEE (2007)
39.
Zurück zum Zitat Yin, Y., Kaku, I., Tang, J., Zhu, J.: Privacy-preserving data mining. Data Mining Concepts, Methods and Applications in Management and Engineering Design, pp. 101–119. Springer, London (2011) Yin, Y., Kaku, I., Tang, J., Zhu, J.: Privacy-preserving data mining. Data Mining Concepts, Methods and Applications in Management and Engineering Design, pp. 101–119. Springer, London (2011)
40.
Zurück zum Zitat Aggarwal, C.C., Yu, P.S.: A condensation approach to privacy preserving data mining. In: Proceedings of the International Conference on Extending Database Technology (EDBT), pp. 183–199 Springer, Heidelberg (2004)CrossRef Aggarwal, C.C., Yu, P.S.: A condensation approach to privacy preserving data mining. In: Proceedings of the International Conference on Extending Database Technology (EDBT), pp. 183–199 Springer, Heidelberg (2004)CrossRef
41.
Zurück zum Zitat Li, D., He, X., Cao, L., Chen, H.: Permutation anonymization. J. Intell. Inf. Syst. 47(3), 427–445 (2015)CrossRef Li, D., He, X., Cao, L., Chen, H.: Permutation anonymization. J. Intell. Inf. Syst. 47(3), 427–445 (2015)CrossRef
Metadaten
Titel
Comparative Analysis of Privacy Preserving Approaches for Collaborative Data Processing
verfasst von
Urvashi Solanki
Bintu Kadhiwala
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-28364-3_18