Skip to main content

2013 | OriginalPaper | Buchkapitel

26. Comparative Environmental Impact Assessment of Nuclear-Based Hydrogen Production via Mg–Cl and Cu–Cl Thermochemical Water Splitting Cycles

verfasst von : Ahmet Ozbilen, Ibrahim Dincer, Marc A. Rosen

Erschienen in: Causes, Impacts and Solutions to Global Warming

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The environmental impacts of nuclear-based hydrogen production processes are evaluated and compared, considering magnesium–chlorine (Mg–Cl) and copper–chlorine (Cu–Cl) thermochemical water decomposition cycles and using life cycle analysis. Variations of environmental impacts (acidification potential and global warming potential) with hydrogen production plant lifetime are reported. An artificial neural network model is used to develop the results. Relations between environmental impacts and economic factors are also presented using the social cost of carbon concept. The results show that the Cu–Cl thermochemical cycle has lower acidification and global warming potentials per unit mass of hydrogen produced compared to the Mg–Cl thermochemical cycle due to its lower electrical work requirement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dincer I (2007) Environmental and sustainability aspects of hydrogen and fuel cell systems. Int J Energy Res 31:29–55CrossRef Dincer I (2007) Environmental and sustainability aspects of hydrogen and fuel cell systems. Int J Energy Res 31:29–55CrossRef
2.
Zurück zum Zitat Dincer I, Balta MT (2011) Potential thermochemical and hybrid cycles for nuclear-based hydrogen production. Int J Energy Res 35:123–127CrossRef Dincer I, Balta MT (2011) Potential thermochemical and hybrid cycles for nuclear-based hydrogen production. Int J Energy Res 35:123–127CrossRef
3.
Zurück zum Zitat Naterer GF, Suppiah S, Stolberg L, Lewis M, Ferrandon M, Wang Z, Dincer I, Gabriel K, Rosen MA, Secnik E, Easton EB, Trevani L, Pioro I, Tremaine P, Lvov S, Jiang J, Rizvi G, Ikeda BM, Lu L, Kaye M, Smith WR, Mostaghimi J, Spekkens P, Fowler M, Avsec J (2011) Clean hydrogen production with the Cu-Cl cycle—progress of international consortium, II: simulations, thermochemical data and materials. Int J Hydrogen Energ 36:15486–15501CrossRef Naterer GF, Suppiah S, Stolberg L, Lewis M, Ferrandon M, Wang Z, Dincer I, Gabriel K, Rosen MA, Secnik E, Easton EB, Trevani L, Pioro I, Tremaine P, Lvov S, Jiang J, Rizvi G, Ikeda BM, Lu L, Kaye M, Smith WR, Mostaghimi J, Spekkens P, Fowler M, Avsec J (2011) Clean hydrogen production with the Cu-Cl cycle—progress of international consortium, II: simulations, thermochemical data and materials. Int J Hydrogen Energ 36:15486–15501CrossRef
4.
Zurück zum Zitat Dincer I (2012) Green methods for hydrogen production. Int J Hydrogen Energ 37:1954–1971CrossRef Dincer I (2012) Green methods for hydrogen production. Int J Hydrogen Energ 37:1954–1971CrossRef
5.
Zurück zum Zitat Muradov NZ, Veziroglu TN (2005) From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energ 30:225–237CrossRef Muradov NZ, Veziroglu TN (2005) From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energ 30:225–237CrossRef
6.
Zurück zum Zitat Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrogen Energ 26:185–190CrossRef Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrogen Energ 26:185–190CrossRef
7.
Zurück zum Zitat Wang ZL, Naterer GF, Gabriel K (2008) Multiphase reactor scale-up for Cu-Cl thermochemical hydrogen production cycle. Int J Hydrogen Energ 33:6934–6946CrossRef Wang ZL, Naterer GF, Gabriel K (2008) Multiphase reactor scale-up for Cu-Cl thermochemical hydrogen production cycle. Int J Hydrogen Energ 33:6934–6946CrossRef
8.
Zurück zum Zitat Rosen MA, Naterer GF, Chukwu CC, Sadhankar R, Suppiah S (2012) Nuclear-based hydrogen production with a thermochemical copper-chlorine cycle and supercritical water reactor: equipment scale-up and process simulation. Int J Energy Res 36:456–465CrossRef Rosen MA, Naterer GF, Chukwu CC, Sadhankar R, Suppiah S (2012) Nuclear-based hydrogen production with a thermochemical copper-chlorine cycle and supercritical water reactor: equipment scale-up and process simulation. Int J Energy Res 36:456–465CrossRef
9.
Zurück zum Zitat Ozbilen A, Dincer I, Rosen MA (2011) Environmental evaluation of hydrogen production via thermochemical water splitting using the Cu-Cl cycle: a parametric study. Int J Hydrogen Energ 36:9514–9528CrossRef Ozbilen A, Dincer I, Rosen MA (2011) Environmental evaluation of hydrogen production via thermochemical water splitting using the Cu-Cl cycle: a parametric study. Int J Hydrogen Energ 36:9514–9528CrossRef
10.
Zurück zum Zitat Ozbilen A, Dincer I, Rosen MA (2012) Life cycle assessment of hydrogen production via thermochemical water splitting using multi-step Cu-Cl cycles. J Clean Prod 33:202–216CrossRef Ozbilen A, Dincer I, Rosen MA (2012) Life cycle assessment of hydrogen production via thermochemical water splitting using multi-step Cu-Cl cycles. J Clean Prod 33:202–216CrossRef
11.
Zurück zum Zitat Lewis MA, Masin JG, O’Hare PA (2009) Evaluation of alternative thermochemical cycles-Part I. The methodology. Int J Hydrogen Energ 34:4115–4124CrossRef Lewis MA, Masin JG, O’Hare PA (2009) Evaluation of alternative thermochemical cycles-Part I. The methodology. Int J Hydrogen Energ 34:4115–4124CrossRef
12.
Zurück zum Zitat Orhan MF, Dincer I, Rosen MA (2011) Design of systems for hydrogen production based on the Cu-Cl thermochemical water decomposition cycle: configurations and performance. Int J Hydrogen Energ 36:11309–11320CrossRef Orhan MF, Dincer I, Rosen MA (2011) Design of systems for hydrogen production based on the Cu-Cl thermochemical water decomposition cycle: configurations and performance. Int J Hydrogen Energ 36:11309–11320CrossRef
13.
Zurück zum Zitat Balta MT, Dincer I, Hepbasli A (2012) Energy and exergy analyses of magnesium-chlorine (Mg-Cl) thermochemical cycle. Int J Hydrogen Energ 37:4855–4862CrossRef Balta MT, Dincer I, Hepbasli A (2012) Energy and exergy analyses of magnesium-chlorine (Mg-Cl) thermochemical cycle. Int J Hydrogen Energ 37:4855–4862CrossRef
14.
Zurück zum Zitat Elder R, Allen R (2009) Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant. Prog Nucl Energy 51:500–525CrossRef Elder R, Allen R (2009) Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant. Prog Nucl Energy 51:500–525CrossRef
15.
Zurück zum Zitat Ball M, Wietschel M (2009) The future of hydrogen—opportunities and challenges. Int J Hydrogen Energ 34:615–627CrossRef Ball M, Wietschel M (2009) The future of hydrogen—opportunities and challenges. Int J Hydrogen Energ 34:615–627CrossRef
16.
Zurück zum Zitat Urbaniec K, Ahrer W (2010) Conference report: 18th World Hydrogen Energy Conference. J Clean Prod 18:S123–S125CrossRef Urbaniec K, Ahrer W (2010) Conference report: 18th World Hydrogen Energy Conference. J Clean Prod 18:S123–S125CrossRef
17.
Zurück zum Zitat Ozbilen A, Dincer I, Naterer GF, Aydin M (2012) Role of hydrogen storage in renewable energy management for Ontario. Int J Hydrogen Energ 37:7343–7354CrossRef Ozbilen A, Dincer I, Naterer GF, Aydin M (2012) Role of hydrogen storage in renewable energy management for Ontario. Int J Hydrogen Energ 37:7343–7354CrossRef
18.
Zurück zum Zitat Dufour J, Serrano DP, Galvez JL, Moreno J, Garcia C (2009) Life cycle assessment of processes for hydrogen production: environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrogen Energ 34:1370–1376CrossRef Dufour J, Serrano DP, Galvez JL, Moreno J, Garcia C (2009) Life cycle assessment of processes for hydrogen production: environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrogen Energ 34:1370–1376CrossRef
19.
Zurück zum Zitat Boehm R, Chen Y, Earl B, Hsieh S, Moujaes S (2003) H2 Technology Survey. UNLV Program, University of Nevada Las Vegas, Center for Energy Research, November 25. Available from www.unlv.edu Boehm R, Chen Y, Earl B, Hsieh S, Moujaes S (2003) H2 Technology Survey. UNLV Program, University of Nevada Las Vegas, Center for Energy Research, November 25. Available from www.​unlv.​edu
20.
Zurück zum Zitat Pilavachi PA, Chatzinapagi AI, Spyropoulou AI (2009) Evaluation of hydrogen production methods using the analytic hierarchy process. Int J Hydrogen Energ 34:5294–5303CrossRef Pilavachi PA, Chatzinapagi AI, Spyropoulou AI (2009) Evaluation of hydrogen production methods using the analytic hierarchy process. Int J Hydrogen Energ 34:5294–5303CrossRef
22.
Zurück zum Zitat Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326CrossRef Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326CrossRef
23.
Zurück zum Zitat Utgikar V, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energ 31:939–944CrossRef Utgikar V, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energ 31:939–944CrossRef
24.
Zurück zum Zitat Herring S, Gougar H (2011) High-temperature electrolysis for hydrogen production from nuclear energy, INL, Idaho National Laboratory, Publication: 05-GA50193-19 Herring S, Gougar H (2011) High-temperature electrolysis for hydrogen production from nuclear energy, INL, Idaho National Laboratory, Publication: 05-GA50193-19
25.
Zurück zum Zitat Balta MT, Dincer I, Hepbasli A (2009) Thermodynamic assessment of geothermal energy use in hydrogen production. Int J Hydrogen Energ 34:2925–2939CrossRef Balta MT, Dincer I, Hepbasli A (2009) Thermodynamic assessment of geothermal energy use in hydrogen production. Int J Hydrogen Energ 34:2925–2939CrossRef
26.
Zurück zum Zitat Curran MA (ed) (2012) Life cycle assessment handbook: a guide for environmentally sustainable products. Wiley, Hoboken, NJ Curran MA (ed) (2012) Life cycle assessment handbook: a guide for environmentally sustainable products. Wiley, Hoboken, NJ
27.
Zurück zum Zitat International Organization for Standardization (ISO) (1997) ISO 14040, Environmental management - life cycle assessment – principles and framework International Organization for Standardization (ISO) (1997) ISO 14040, Environmental management - life cycle assessment – principles and framework
28.
Zurück zum Zitat International Organization for Standardization (ISO) (1998) ISO 14041, Environmental management - life cycle assessment – goal and scope definition and inventory analysis International Organization for Standardization (ISO) (1998) ISO 14041, Environmental management - life cycle assessment – goal and scope definition and inventory analysis
29.
Zurück zum Zitat International Organization for Standardization (ISO) (2000a) ISO 14042, Environmental management - life cycle assessment – life cycle impact assessment International Organization for Standardization (ISO) (2000a) ISO 14042, Environmental management - life cycle assessment – life cycle impact assessment
30.
Zurück zum Zitat International Organization for Standardization (ISO) (2000b) ISO 14043, Environmental management - life cycle assessment – life cycle interpretation International Organization for Standardization (ISO) (2000b) ISO 14043, Environmental management - life cycle assessment – life cycle interpretation
31.
Zurück zum Zitat International Organization for Standardization (ISO) (2006) ISO 14044, Environmental management - life cycle assessment – requirements and guidelines International Organization for Standardization (ISO) (2006) ISO 14044, Environmental management - life cycle assessment – requirements and guidelines
32.
Zurück zum Zitat Curran MA (2000) Life cycle assessment: an international experience. Environ Progress 19:65–71CrossRef Curran MA (2000) Life cycle assessment: an international experience. Environ Progress 19:65–71CrossRef
33.
Zurück zum Zitat Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, Oers L van, Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de, Duin R van, Huijbregts MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, Dordrecht. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, Oers L van, Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de, Duin R van, Huijbregts MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, Dordrecht.
34.
Zurück zum Zitat Goedkoop M, Demmers M, Collignon M (1996) The eco-indicator 95 manual for designers, national reuse of waste research programme, Netherlands Goedkoop M, Demmers M, Collignon M (1996) The eco-indicator 95 manual for designers, national reuse of waste research programme, Netherlands
35.
Zurück zum Zitat Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 – general system characteristics. CPM report 1999:4, Center for Environmental Assessment, Chalmers University of Technology, Gothenburg, Sweden Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 – general system characteristics. CPM report 1999:4, Center for Environmental Assessment, Chalmers University of Technology, Gothenburg, Sweden
36.
Zurück zum Zitat Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330CrossRef Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330CrossRef
37.
Zurück zum Zitat Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Cambridge University Press, Cambridge, UK Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Cambridge University Press, Cambridge, UK
38.
Zurück zum Zitat Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory (NREL), Golden, CO, TP-570-27637 Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory (NREL), Golden, CO, TP-570-27637
39.
Zurück zum Zitat Spath PL, Mann MK (2004) Life cycle assessment of hydrogen production via wind/electrolysis. Technical report. NREL, National Renewable Energy Laboratory, Golden, CO, MP-560-3504 Spath PL, Mann MK (2004) Life cycle assessment of hydrogen production via wind/electrolysis. Technical report. NREL, National Renewable Energy Laboratory, Golden, CO, MP-560-3504
40.
Zurück zum Zitat Marquevich M, Sonnemann GW, Castells F, Montane D (2002) Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock. Green Chem 4:414–423CrossRef Marquevich M, Sonnemann GW, Castells F, Montane D (2002) Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock. Green Chem 4:414–423CrossRef
41.
Zurück zum Zitat Koroneos C, Dompros A, Roumbas G, Moussipoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energ 29:1443–1450CrossRef Koroneos C, Dompros A, Roumbas G, Moussipoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energ 29:1443–1450CrossRef
42.
Zurück zum Zitat Utgikar V, Ward B (2006) Life cycle assessment of ISPRA Mark 9 thermochemical cycle for nuclear hydrogen production. J Chem Technol Biotechnol 81:1753–1759CrossRef Utgikar V, Ward B (2006) Life cycle assessment of ISPRA Mark 9 thermochemical cycle for nuclear hydrogen production. J Chem Technol Biotechnol 81:1753–1759CrossRef
43.
Zurück zum Zitat Solli C, Stromman AH, Herrtwich EG (2006) Fission or fossil: life cycle assessment of hydrogen production. Proc IEEE 94:1785–1794CrossRef Solli C, Stromman AH, Herrtwich EG (2006) Fission or fossil: life cycle assessment of hydrogen production. Proc IEEE 94:1785–1794CrossRef
44.
Zurück zum Zitat Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification: a life cycle assessment approach. Chem Eng Process 47:1267–1274 Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification: a life cycle assessment approach. Chem Eng Process 47:1267–1274
45.
Zurück zum Zitat Djomo SN, Humbert S, Blumberga D (2008) Life cycle assessment of hydrogen produced potato steam peels. Int J Hydrogen Energ 33:3067–3072CrossRef Djomo SN, Humbert S, Blumberga D (2008) Life cycle assessment of hydrogen produced potato steam peels. Int J Hydrogen Energ 33:3067–3072CrossRef
46.
Zurück zum Zitat Lubis LL, Dincer I, Rosen MA (2010) Life cycle assessment of hydrogen production using nuclear energy: an application based on thermochemical water splitting. J Energy Resour Technol 132:210041–210046CrossRef Lubis LL, Dincer I, Rosen MA (2010) Life cycle assessment of hydrogen production using nuclear energy: an application based on thermochemical water splitting. J Energy Resour Technol 132:210041–210046CrossRef
47.
Zurück zum Zitat Chouai A, Laugier S, Richon D (2002) Modeling of thermodynamic properties using neural networks application to refrigerants. Fluid Phase Equilibr 199:53–62CrossRef Chouai A, Laugier S, Richon D (2002) Modeling of thermodynamic properties using neural networks application to refrigerants. Fluid Phase Equilibr 199:53–62CrossRef
48.
Zurück zum Zitat Kizilkan O (2011) Thermodynamic analysis of variable speed refrigeration system using artificial neural networks. Expert Sys Appl 38:11686–11692CrossRef Kizilkan O (2011) Thermodynamic analysis of variable speed refrigeration system using artificial neural networks. Expert Sys Appl 38:11686–11692CrossRef
49.
Zurück zum Zitat Simpson MF, Herrmann SD, Boyle BD (2006) A hybrid thermochemical electrolytic process for hydrogen production based on the reverse Deacon reaction. Int J Hydrogen Energ 31:1241–1246CrossRef Simpson MF, Herrmann SD, Boyle BD (2006) A hybrid thermochemical electrolytic process for hydrogen production based on the reverse Deacon reaction. Int J Hydrogen Energ 31:1241–1246CrossRef
50.
Zurück zum Zitat Motupally D, Mah DT, Freire FJ, Weidner JW (1998) Recycling chlorine from hydrogen chloride. Electrochem Soc Interf 7:32–36 Motupally D, Mah DT, Freire FJ, Weidner JW (1998) Recycling chlorine from hydrogen chloride. Electrochem Soc Interf 7:32–36
51.
Zurück zum Zitat Petri MC, Yildiz B, Klickman AE (2006) US Work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550 °C. Int J Nuclear Hydrog Prod Appl 1:79–91 Petri MC, Yildiz B, Klickman AE (2006) US Work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550 °C. Int J Nuclear Hydrog Prod Appl 1:79–91
52.
Zurück zum Zitat Pioro IL, Duffey RB (2007) Heat transfer and hydraulic resistance at supercritical pressures in power engineering applications. ASME, New YorkCrossRef Pioro IL, Duffey RB (2007) Heat transfer and hydraulic resistance at supercritical pressures in power engineering applications. ASME, New YorkCrossRef
53.
Zurück zum Zitat Akdag U, Komur MA, Ozguc AF (2009) Estimation of heat transfer in oscillating annular flow using artificial neural Networks. Adv Eng Softw 40:864–870CrossRefMATH Akdag U, Komur MA, Ozguc AF (2009) Estimation of heat transfer in oscillating annular flow using artificial neural Networks. Adv Eng Softw 40:864–870CrossRefMATH
54.
Zurück zum Zitat Hope CW (2006) The social cost of carbon: what does it actually depend on? Clim Policy 6:565–572 Hope CW (2006) The social cost of carbon: what does it actually depend on? Clim Policy 6:565–572
Metadaten
Titel
Comparative Environmental Impact Assessment of Nuclear-Based Hydrogen Production via Mg–Cl and Cu–Cl Thermochemical Water Splitting Cycles
verfasst von
Ahmet Ozbilen
Ibrahim Dincer
Marc A. Rosen
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-7588-0_26