Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

02.10.2020 | Original Paper | Ausgabe 2/2021

Bulletin of Engineering Geology and the Environment 2/2021

Comparative landslide spatial research based on various sample sizes and ratios in Penang Island, Malaysia

Zeitschrift:
Bulletin of Engineering Geology and the Environment > Ausgabe 2/2021
Autoren:
Han Gao, Pei Shan Fam, Lea Tien Tay, Heng Chin Low

Abstract

This paper aims to compare and develop the influence on different sample sizes and sample ratios when using machine learning (ML) models, i.e., support vector machine (SVM) and artificial neural network (ANN), to produce landslide susceptibility maps (LSMs) in Penang Island, Malaysia. At the same time, traditional statistical (TS) models are also considered to produce LSMs in this comparative research. The receiver operating characteristic (ROC) curve and recall metric are applied to evaluate the model’s performance. Based on the evaluation criteria, the ML model outperforms the TS models and the ML models trained using the datasets with larger sample size give a better performance. ML models, especially SVM models, have better performance when training with balanced datasets as well as the datasets of more landslide sample data. Kruskal-Wallis test and Mann-Whitney U test are applied to test the significance. The results indicate that sample size and sample ratio are essential factors when considering ML models to produce LSMs. The LSMs produced in this research can provide valid and useful information to the local authorities for landslide mitigation and prediction.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2021

Bulletin of Engineering Geology and the Environment 2/2021 Zur Ausgabe