Skip to main content
Erschienen in: Journal of Polymer Research 12/2016

01.12.2016 | ORIGINAL PAPER

Comparative study of microbial fuel cell performance using poly ether ether ketone-based anion and cation exchange membranes

verfasst von: Mahendiravarman Elangovan, Sangeetha Dharmalingam

Erschienen in: Journal of Polymer Research | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this report, poly ether ether ketone (PEEK)-based anion and cation exchange membranes were assembled separately in two identical and compact microbial fuel cells (MFCs) without water and gas trapping between membrane and the electrode. We examined the use of these two membranes with the same electrode surface area as well as anode and cathode volumes. A maximum power density of 603 and 458 mW m−2 with a columbic efficiency of 76 and 61% were observed for quaternized poly ether ether ketone (QPEEK) and sulfonated poly ether ether ketone (SPEEK), respectively. A few solution chemistry parameters, which are leading factors behind the cell performance, such as variation in conductivity and solution pH in the two chambers were observed. In addition, the mobility of anions and cations (other than protons and hydroxyl ions in the case of cation and anion exchange membranes, respectively) under the inoculated conditions was also investigated. Further, the membrane charge-based biofilm growth was also analyzed by SEM and impedance spectroscopy to find its influence on the MFC performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355CrossRef Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355CrossRef
2.
Zurück zum Zitat Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:564–571CrossRef Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:564–571CrossRef
3.
Zurück zum Zitat Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381CrossRef Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381CrossRef
4.
Zurück zum Zitat Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298CrossRef Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298CrossRef
5.
Zurück zum Zitat Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ SciTechnol 42:8630–8640CrossRef Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ SciTechnol 42:8630–8640CrossRef
6.
Zurück zum Zitat Torres CI, Marcus AK, Rittmann BE (2007) Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl Microbiol Biotechnol 77:689–697CrossRef Torres CI, Marcus AK, Rittmann BE (2007) Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl Microbiol Biotechnol 77:689–697CrossRef
7.
Zurück zum Zitat Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung TN (2004) Enrichment of microbial community generating electricity using a fuel cell type electrochemical cell. Appl Microbiol Biotechnol 63:672–681CrossRef Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung TN (2004) Enrichment of microbial community generating electricity using a fuel cell type electrochemical cell. Appl Microbiol Biotechnol 63:672–681CrossRef
8.
Zurück zum Zitat Torres CI, Marcus AK, Rittmann BE (2008) Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol Bioengg 100:872–881CrossRef Torres CI, Marcus AK, Rittmann BE (2008) Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol Bioengg 100:872–881CrossRef
9.
Zurück zum Zitat Ghangrekar MM, Shinde VB (2007) Performance of membraneless microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour Technol 98:2879–2885CrossRef Ghangrekar MM, Shinde VB (2007) Performance of membraneless microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour Technol 98:2879–2885CrossRef
10.
Zurück zum Zitat Chae KJ, Choi M, Ajayi FF, Park W, Chang IS, Kim IS (2008) Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuel 22:169–176CrossRef Chae KJ, Choi M, Ajayi FF, Park W, Chang IS, Kim IS (2008) Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuel 22:169–176CrossRef
11.
Zurück zum Zitat Liu H, Logan BE (2004) Electricity generation using an air cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046CrossRef Liu H, Logan BE (2004) Electricity generation using an air cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046CrossRef
12.
Zurück zum Zitat Fan Y, Hongqiang H, Liu H (2007) Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171:348–354CrossRef Fan Y, Hongqiang H, Liu H (2007) Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171:348–354CrossRef
13.
Zurück zum Zitat Cheng HL, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40:2426–2432CrossRef Cheng HL, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40:2426–2432CrossRef
14.
Zurück zum Zitat Do KNT, Kim D (2008) Comparison of homogeneously and heterogeneously sulfonated polyether ether ketone membranes in preparation, properties and cell performance. J Power Sources 185:63–69CrossRef Do KNT, Kim D (2008) Comparison of homogeneously and heterogeneously sulfonated polyether ether ketone membranes in preparation, properties and cell performance. J Power Sources 185:63–69CrossRef
15.
Zurück zum Zitat Sivasankaran A, Sangeetha D (2011) Development of MFC using sulphonated polyether ether ketone (SPEEK) membrane for electricity generation from waste water. Bioresour Technol 102:11167–11171CrossRef Sivasankaran A, Sangeetha D (2011) Development of MFC using sulphonated polyether ether ketone (SPEEK) membrane for electricity generation from waste water. Bioresour Technol 102:11167–11171CrossRef
16.
Zurück zum Zitat Mahendiravarman E, Sangeetha D (2013) Increased microbial fuel cell performance using quaternized poly ether ether ketone anionic membrane electrolyte for electricity generation. Int J Hydrogen Energy 38:2471–2479CrossRef Mahendiravarman E, Sangeetha D (2013) Increased microbial fuel cell performance using quaternized poly ether ether ketone anionic membrane electrolyte for electricity generation. Int J Hydrogen Energy 38:2471–2479CrossRef
17.
Zurück zum Zitat Kim JR, Cheng S, Oh SE, Logan BE (2007) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1109CrossRef Kim JR, Cheng S, Oh SE, Logan BE (2007) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1109CrossRef
18.
Zurück zum Zitat Zuo Y, Cheng S, Logan BE (2008) Ion exchange membrane cathodes for scalable microbial fuel cells. Environ Sci Technol 42:6967–6972CrossRef Zuo Y, Cheng S, Logan BE (2008) Ion exchange membrane cathodes for scalable microbial fuel cells. Environ Sci Technol 42:6967–6972CrossRef
19.
Zurück zum Zitat Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994CrossRef Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994CrossRef
20.
Zurück zum Zitat Kim JR, Premier GC, Hawkes FR, Dinsdale RM, Guwy AJ (2009) Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. J Power Sources 187:393–399CrossRef Kim JR, Premier GC, Hawkes FR, Dinsdale RM, Guwy AJ (2009) Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. J Power Sources 187:393–399CrossRef
21.
Zurück zum Zitat Guhan S, Sangeetha D (2009) Evaluation of sulfonated poly (ether ether ketone) silicotungstic acid composite membranes for fuel cell applications. Int J Polymeric Materials 58:87–98CrossRef Guhan S, Sangeetha D (2009) Evaluation of sulfonated poly (ether ether ketone) silicotungstic acid composite membranes for fuel cell applications. Int J Polymeric Materials 58:87–98CrossRef
22.
Zurück zum Zitat Padmavathi R, Sangeetha D (2013) Design of novel SPEEK-based proton exchange membranes by self-assembly method for fuel cells. Ionics 19:1423–1436CrossRef Padmavathi R, Sangeetha D (2013) Design of novel SPEEK-based proton exchange membranes by self-assembly method for fuel cells. Ionics 19:1423–1436CrossRef
23.
Zurück zum Zitat Hwang G, Ohya H (1998) Preparation of anion-exchange membrane based on block copolymers. Part 1. Amination of the chloromethylated copolymers. J Membr Sci 140:195–203CrossRef Hwang G, Ohya H (1998) Preparation of anion-exchange membrane based on block copolymers. Part 1. Amination of the chloromethylated copolymers. J Membr Sci 140:195–203CrossRef
24.
Zurück zum Zitat Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating, non hydrogen- oxidizing methane bacterium. Arch Microbiol 124:1–11 Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating, non hydrogen- oxidizing methane bacterium. Arch Microbiol 124:1–11
25.
Zurück zum Zitat Tom HJA, Sleutels LD, Hubertus Hamelers VM, Buisman Cees JN (2011) Effect of operational parameters on coulombic efficiency in bioelectrochemical systems. Bioresour Technol 102:11172–11176CrossRef Tom HJA, Sleutels LD, Hubertus Hamelers VM, Buisman Cees JN (2011) Effect of operational parameters on coulombic efficiency in bioelectrochemical systems. Bioresour Technol 102:11172–11176CrossRef
26.
Zurück zum Zitat Xiaoyuan Z, Shaoan C, Xia H, Logan BE (2010) Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosensors Bioelectronics 25:1825–1828CrossRef Xiaoyuan Z, Shaoan C, Xia H, Logan BE (2010) Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosensors Bioelectronics 25:1825–1828CrossRef
27.
Zurück zum Zitat Franks AE, Nevin KP, Jia H, Izallalen M, Woodard TL, Lovley DR (2009) Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation with the anode biofilm. Energy Environ Sci 2:113–119CrossRef Franks AE, Nevin KP, Jia H, Izallalen M, Woodard TL, Lovley DR (2009) Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation with the anode biofilm. Energy Environ Sci 2:113–119CrossRef
28.
Zurück zum Zitat Sleutels THJA, Hamelers HVM, Rozendal RA, Buisman CJN (2009) Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int J Hydrogen Energy 34:3612–3620 Sleutels THJA, Hamelers HVM, Rozendal RA, Buisman CJN (2009) Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int J Hydrogen Energy 34:3612–3620
29.
Zurück zum Zitat Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104:18871–18873CrossRef Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104:18871–18873CrossRef
30.
Zurück zum Zitat Qiongjuan D, Shanhai G, Chao YW (2013) Water uptake, ionic conductivity and swelling properties of anion-exchange membrane. J Power Sources 243:773–778CrossRef Qiongjuan D, Shanhai G, Chao YW (2013) Water uptake, ionic conductivity and swelling properties of anion-exchange membrane. J Power Sources 243:773–778CrossRef
31.
Zurück zum Zitat Pandit S, Ghangrekar MM, Das D (2012) Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell. Int J of Hydrogen Energy 37:9383–9392CrossRef Pandit S, Ghangrekar MM, Das D (2012) Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell. Int J of Hydrogen Energy 37:9383–9392CrossRef
32.
Zurück zum Zitat Kazemi S, Fatih K, Mohseni M, Wang H (2012) Investigating separators to improve performance of flat-plate microbial fuel cells. Meeting Abstracts: The Electrochemical Society 3593 Kazemi S, Fatih K, Mohseni M, Wang H (2012) Investigating separators to improve performance of flat-plate microbial fuel cells. Meeting Abstracts: The Electrochemical Society 3593
33.
Zurück zum Zitat Cord-Ruwisch R, Law Y, Cheng KY (2011) Ammonium as a sustainable proton shuttle in bio electrochemical systems. Bioresour Technol 102:9691–9696CrossRef Cord-Ruwisch R, Law Y, Cheng KY (2011) Ammonium as a sustainable proton shuttle in bio electrochemical systems. Bioresour Technol 102:9691–9696CrossRef
34.
Zurück zum Zitat Jadhav G, Ghangrekar M (2009) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol 100:717–723CrossRef Jadhav G, Ghangrekar M (2009) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol 100:717–723CrossRef
35.
Zurück zum Zitat Freguia S, Rabaey K, Yuan Z, Keller J (2007) Non-catalyzed cathode oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta 53:598–603CrossRef Freguia S, Rabaey K, Yuan Z, Keller J (2007) Non-catalyzed cathode oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta 53:598–603CrossRef
36.
Zurück zum Zitat Mo Y, Liang P, Huang X, Wang H, Cao X (2009) Enhancing the stability of power generation of single-chamber microbial fuel cells using an anion exchange membrane. J Chem Technol Biotechnol 84:1767–1772CrossRef Mo Y, Liang P, Huang X, Wang H, Cao X (2009) Enhancing the stability of power generation of single-chamber microbial fuel cells using an anion exchange membrane. J Chem Technol Biotechnol 84:1767–1772CrossRef
37.
Zurück zum Zitat Xu J, Sheng GP, Luo HW, Li WW, Wang LF, Yu HQ (2011) Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Res 46:1817–1824CrossRef Xu J, Sheng GP, Luo HW, Li WW, Wang LF, Yu HQ (2011) Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Res 46:1817–1824CrossRef
38.
Zurück zum Zitat Choi MJ, Chae KJ, Ajayi FF, Kim KY, Yu HW, Kim CW (2011) Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance. Bioresour Technol 102:298–303CrossRef Choi MJ, Chae KJ, Ajayi FF, Kim KY, Yu HW, Kim CW (2011) Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance. Bioresour Technol 102:298–303CrossRef
39.
Zurück zum Zitat Watson VJ, Saito T, Hickner MA, Logan BE (2011) Polymer coatings as separator layers for microbial fuel cell cathodes. J Power Sources 196:3009–3014CrossRef Watson VJ, Saito T, Hickner MA, Logan BE (2011) Polymer coatings as separator layers for microbial fuel cell cathodes. J Power Sources 196:3009–3014CrossRef
40.
Zurück zum Zitat Zhang X, Cheng S, Wang X, Huang X, Logan BE (2009) Separator characteristics for increasing performance of microbial fuel cells. Environ Sci Technol 43:8456–8461CrossRef Zhang X, Cheng S, Wang X, Huang X, Logan BE (2009) Separator characteristics for increasing performance of microbial fuel cells. Environ Sci Technol 43:8456–8461CrossRef
Metadaten
Titel
Comparative study of microbial fuel cell performance using poly ether ether ketone-based anion and cation exchange membranes
verfasst von
Mahendiravarman Elangovan
Sangeetha Dharmalingam
Publikationsdatum
01.12.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 12/2016
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-016-1136-9

Weitere Artikel der Ausgabe 12/2016

Journal of Polymer Research 12/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.