Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2020

21.07.2020

Comparative Study of Microstructure and Mechanical Properties of X80 SAW Welds Prepared Using Different Wires and Heat Inputs

verfasst von: Qiaoling Chu, Shuai Xu, Xiongwei Tong, Jie Li, Min Zhang, Fuxue Yan, Wanpeng Zhang, Zongyue Bi, Cheng Yan

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work investigated the effect of weld composition and welding heat input on the microstructure and mechanical properties of two submerged arc welded (SAW) joints of API 5L-X80 pipeline steel. The weld metals were joined by two welding consumables (one is rich in C, Ni, Cr, Mo) under different welding heat inputs (20-22 and 34-36 kJ/cm for single-wire and triple-wire processes, respectively). The triple-wire welding procedure with less C, Ni, Cr, Mo alloy contents favors the formation of acicular ferrite (AF), whereas single-wire welding procedure with increased C, Ni, Cr, Mo contents promotes the formation of lath bainite (LB). Nanoindentation is used to evaluate the property of different microstructures. The hardness of lath bainite (LB), granular bainite (GB) and acicular ferrite (AF) is 8.0 GPa, 5.8 GPa and 3.0 GPa, respectively. The Charpy impact energy of weld metal with triple-wire welding procedure (136-165 J) is much greater than that with single-wire welding procedure (15-44 J) at − 45 °C. Larger cleavage facet size is observed in the fracture surface of single-wire weld metal. A computational procedure is developed to understand the temperature fields during the triple-wire welding. Combining the experiments and numerical simulation, simple models to predict the microstructure evolution through the weld thickness are established.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Vervynckt, K. Verbeken, B. Lopez, and J.J. Jonas, Modern HSLA Steels and Role of Non-recrystallisation Temperature, Int. Mater. Rev., 2012, 57, p 187–207CrossRef S. Vervynckt, K. Verbeken, B. Lopez, and J.J. Jonas, Modern HSLA Steels and Role of Non-recrystallisation Temperature, Int. Mater. Rev., 2012, 57, p 187–207CrossRef
2.
Zurück zum Zitat J.C. Villalobos, A. Del-Pozo, B. Campillo, J. Mayen, and S. Serna, Microalloyed Steels Through History Until 2018: Review of Chemical Composition, Processing and Hydrogen Service, Metals, 2018, 8, p 1–49CrossRef J.C. Villalobos, A. Del-Pozo, B. Campillo, J. Mayen, and S. Serna, Microalloyed Steels Through History Until 2018: Review of Chemical Composition, Processing and Hydrogen Service, Metals, 2018, 8, p 1–49CrossRef
3.
Zurück zum Zitat W.W. Bose-Filho, A.L.M. Garvalho, and M. Strangwood, Effects of Alloying Elements on the Microstructure and Inclusion Formation in HSLA Multipass Welds, Mater. Charact., 2007, 58, p 29–39CrossRef W.W. Bose-Filho, A.L.M. Garvalho, and M. Strangwood, Effects of Alloying Elements on the Microstructure and Inclusion Formation in HSLA Multipass Welds, Mater. Charact., 2007, 58, p 29–39CrossRef
4.
Zurück zum Zitat J.H. Kong, L. Zhen, B. Guo, P.H. Li, A.H. Wang, and C.S. Xie, Influence of Mo Content on Microstructure and Mechanical Properties of High Strength Pipeline Steel, Mater. Des., 2004, 25, p 723–728CrossRef J.H. Kong, L. Zhen, B. Guo, P.H. Li, A.H. Wang, and C.S. Xie, Influence of Mo Content on Microstructure and Mechanical Properties of High Strength Pipeline Steel, Mater. Des., 2004, 25, p 723–728CrossRef
5.
Zurück zum Zitat M.C. Zhao and K. Yang, Strengthening and Improvement of Sulfide Stress Cracking Resistance in Acicular Ferrite Pipeline Steels by Nano-sized Carbonitrides, Scr. Mater., 2005, 52, p 881–886CrossRef M.C. Zhao and K. Yang, Strengthening and Improvement of Sulfide Stress Cracking Resistance in Acicular Ferrite Pipeline Steels by Nano-sized Carbonitrides, Scr. Mater., 2005, 52, p 881–886CrossRef
6.
Zurück zum Zitat R.A. Farrar and P.L. Harrison, Acicular Ferrite in Carbon-Manganese Weld Metals: An Overview, J. Mater. Sci., 1987, 22, p 3812–3820CrossRef R.A. Farrar and P.L. Harrison, Acicular Ferrite in Carbon-Manganese Weld Metals: An Overview, J. Mater. Sci., 1987, 22, p 3812–3820CrossRef
7.
Zurück zum Zitat B. Beidokhti, A.H. Koukabi, and A. Dolati, Effect of Titanium Addition on the Microstructure and Inclusion Formation in Submerged Arc Welded HSLA Pipeline Steel, J. Mater. Process. Technol., 2009, 209, p 4027–4035CrossRef B. Beidokhti, A.H. Koukabi, and A. Dolati, Effect of Titanium Addition on the Microstructure and Inclusion Formation in Submerged Arc Welded HSLA Pipeline Steel, J. Mater. Process. Technol., 2009, 209, p 4027–4035CrossRef
8.
Zurück zum Zitat S.D. Bhole, J.B. Nemade, L. Collins, and C. Liu, Effect of Nickel and Molybdenum Additions on Weld Metal Toughness in a Submerged Arc Welded HSLA Line-Pipe Steel, J. Mater. Process. Technol., 2006, 173, p 92–100CrossRef S.D. Bhole, J.B. Nemade, L. Collins, and C. Liu, Effect of Nickel and Molybdenum Additions on Weld Metal Toughness in a Submerged Arc Welded HSLA Line-Pipe Steel, J. Mater. Process. Technol., 2006, 173, p 92–100CrossRef
9.
Zurück zum Zitat A.R.H. Midawi, E.B.F. Santos, N. Huda, A.K. Sinha, R. Lazor, and A.P. Gerlich, Microstructures and Mechanical Properties in Two X80 Weld Metals Produced Using Similar Heat Input, J. Mater. Process. Technol., 2015, 226, p 272–279CrossRef A.R.H. Midawi, E.B.F. Santos, N. Huda, A.K. Sinha, R. Lazor, and A.P. Gerlich, Microstructures and Mechanical Properties in Two X80 Weld Metals Produced Using Similar Heat Input, J. Mater. Process. Technol., 2015, 226, p 272–279CrossRef
10.
Zurück zum Zitat B. Beidokhti, A.H. Koukabi, and A. Dolati, Influence of Titanium and Manganese on High Strength Low Alloy SAW Weld Metal Properties, Mater. Charact., 2009, 60, p 225–233CrossRef B. Beidokhti, A.H. Koukabi, and A. Dolati, Influence of Titanium and Manganese on High Strength Low Alloy SAW Weld Metal Properties, Mater. Charact., 2009, 60, p 225–233CrossRef
11.
Zurück zum Zitat J. Hu, L.X. Du, and J.J. Wang, Effect of Cooling Procedure on Microstructures and Mechanical Properties of Hot Rolled Nb-Ti Bainitic High Strength Steel, Mater. Sci. Eng. A, 2012, 554, p 79–85CrossRef J. Hu, L.X. Du, and J.J. Wang, Effect of Cooling Procedure on Microstructures and Mechanical Properties of Hot Rolled Nb-Ti Bainitic High Strength Steel, Mater. Sci. Eng. A, 2012, 554, p 79–85CrossRef
12.
Zurück zum Zitat K.W. Andrews, Empirical Formulae for the Calculation of Some Transformation Temperatures, J. Iron Steel Inst., 1965, 203, p 721–727 K.W. Andrews, Empirical Formulae for the Calculation of Some Transformation Temperatures, J. Iron Steel Inst., 1965, 203, p 721–727
13.
Zurück zum Zitat N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor, and A.P. Gerlich, Influence of Martensite-Austenite (MA) on Impact Toughness of X80 Line Pipe Steels, Mater. Sci. Eng. A, 2016, 662, p 481–491CrossRef N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor, and A.P. Gerlich, Influence of Martensite-Austenite (MA) on Impact Toughness of X80 Line Pipe Steels, Mater. Sci. Eng. A, 2016, 662, p 481–491CrossRef
14.
Zurück zum Zitat C.Y. Yan, C.Y. Liu, and B. Yan, 3D Modeling of the Hydrogen Distribution in X80 Pipeline Steel Welded Joints, Comput. Mater. Sci., 2014, 83, p 158–163CrossRef C.Y. Yan, C.Y. Liu, and B. Yan, 3D Modeling of the Hydrogen Distribution in X80 Pipeline Steel Welded Joints, Comput. Mater. Sci., 2014, 83, p 158–163CrossRef
15.
Zurück zum Zitat B. Brickstad and B.L. Josefson, A Parametric Study of Residual Stresses in Multi-pass Butt-Welded Stainless Steel Pipes, Int. J. Pres. Ves. Pip., 1998, 75, p 11–25CrossRef B. Brickstad and B.L. Josefson, A Parametric Study of Residual Stresses in Multi-pass Butt-Welded Stainless Steel Pipes, Int. J. Pres. Ves. Pip., 1998, 75, p 11–25CrossRef
16.
Zurück zum Zitat M. Mohammadijoo, J. Valloton, L. Collins, H. Henein, and D.G. Ivey, Characterization of Martensite-Austenite Constituents and Micro-hardness in Intercritical Reheated and Coarse-Grained Heat Affected Zones of API, X70 HSLA Steel, Mater. Charact., 2018, 142, p 321–331CrossRef M. Mohammadijoo, J. Valloton, L. Collins, H. Henein, and D.G. Ivey, Characterization of Martensite-Austenite Constituents and Micro-hardness in Intercritical Reheated and Coarse-Grained Heat Affected Zones of API, X70 HSLA Steel, Mater. Charact., 2018, 142, p 321–331CrossRef
17.
Zurück zum Zitat P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby, Cleavage Fracture Initiation at M-A Constituents in Intercritically Coarse-Grained Heat-Affected Zone of a HSLA Steel, Metall. Mater. Trans. A, 2014, 45, p 384–394CrossRef P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby, Cleavage Fracture Initiation at M-A Constituents in Intercritically Coarse-Grained Heat-Affected Zone of a HSLA Steel, Metall. Mater. Trans. A, 2014, 45, p 384–394CrossRef
18.
Zurück zum Zitat Z.X. Zhu, J. Han, H.J. Li, and C. Lu, High Temperature Processed High Nb X80 Steel with Excellent Heat-Affected Zone Toughness, Mater. Lett., 2016, 163, p 171–174CrossRef Z.X. Zhu, J. Han, H.J. Li, and C. Lu, High Temperature Processed High Nb X80 Steel with Excellent Heat-Affected Zone Toughness, Mater. Lett., 2016, 163, p 171–174CrossRef
19.
Zurück zum Zitat W.G. Zhao, W. Wang, S.H. Chen, and J.B. Qu, Effect of Simulated Welding Thermal Cycle on Microstructure and Mechanical Properties of X90 Pipeline Steel, Mater. Sci. Eng. A, 2011, 528, p 7417–7422CrossRef W.G. Zhao, W. Wang, S.H. Chen, and J.B. Qu, Effect of Simulated Welding Thermal Cycle on Microstructure and Mechanical Properties of X90 Pipeline Steel, Mater. Sci. Eng. A, 2011, 528, p 7417–7422CrossRef
20.
Zurück zum Zitat S.S. Babu, The Mechanism of Acicular Ferrite in Weld Deposits, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 267–278CrossRef S.S. Babu, The Mechanism of Acicular Ferrite in Weld Deposits, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 267–278CrossRef
21.
Zurück zum Zitat A. Lambert-Perlade, A.F. Gourgues, and A. Pineau, Austenite to Bainite Phase Transformation in the Heat-Affected Zone of a High Strength Low Alloy Steel, Acta Mater., 2004, 52, p 2337–2348CrossRef A. Lambert-Perlade, A.F. Gourgues, and A. Pineau, Austenite to Bainite Phase Transformation in the Heat-Affected Zone of a High Strength Low Alloy Steel, Acta Mater., 2004, 52, p 2337–2348CrossRef
22.
Zurück zum Zitat A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, and A. Pineau, Mechanisms and Modeling of Cleavage Fracture in Simulated Heat-Affected Zone Microstructures of a High-Strength Low Alloy Steel, Metall. Mater. Trans. A, 2004, 35A, p 1039–1053CrossRef A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, and A. Pineau, Mechanisms and Modeling of Cleavage Fracture in Simulated Heat-Affected Zone Microstructures of a High-Strength Low Alloy Steel, Metall. Mater. Trans. A, 2004, 35A, p 1039–1053CrossRef
23.
Zurück zum Zitat H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54, p 1279–1288CrossRef H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54, p 1279–1288CrossRef
24.
Zurück zum Zitat Y. Li, D.N. Crowther, M.J.W. Green, P.S. Mitchell, and T.N. Baker, The Effect of Vanadium and Niobium on the Properties and Microstructure of the Intercritically Reheated Coarse Grained Heat Affected Zone in Low Carbon Microalloyed Steels, ISIJ Int., 2001, 41, p 46–55CrossRef Y. Li, D.N. Crowther, M.J.W. Green, P.S. Mitchell, and T.N. Baker, The Effect of Vanadium and Niobium on the Properties and Microstructure of the Intercritically Reheated Coarse Grained Heat Affected Zone in Low Carbon Microalloyed Steels, ISIJ Int., 2001, 41, p 46–55CrossRef
25.
Zurück zum Zitat C.M. Wang, X.F. Wu, J. Liu, and N.A. Xu, Transmission electron microscopy of martensite/austenite islands in pipeline steel X70, Mater. Sci. Eng. A, 2006, 438-440, p 267–271CrossRef C.M. Wang, X.F. Wu, J. Liu, and N.A. Xu, Transmission electron microscopy of martensite/austenite islands in pipeline steel X70, Mater. Sci. Eng. A, 2006, 438-440, p 267–271CrossRef
26.
Zurück zum Zitat D.P. Fairchild, N.V. Bangaru, J.Y. Koo, P.L. Harrison, and A. Ozekcin, A Study Concerning Intercritical HAZ Microstructure and Toughness in HSLA Steels, Weld. J., 1991, 70, p 321s–329s D.P. Fairchild, N.V. Bangaru, J.Y. Koo, P.L. Harrison, and A. Ozekcin, A Study Concerning Intercritical HAZ Microstructure and Toughness in HSLA Steels, Weld. J., 1991, 70, p 321s–329s
27.
Zurück zum Zitat S. Moeinifar, A.H. Kokabi, and H.R. Madaah-Hosseini, Influence of peak temperature during simulation and real thermal cycles on microstructure and fracture properties of the reheated zones, Mater. Des., 2010, 31(6), p 2948–2955CrossRef S. Moeinifar, A.H. Kokabi, and H.R. Madaah-Hosseini, Influence of peak temperature during simulation and real thermal cycles on microstructure and fracture properties of the reheated zones, Mater. Des., 2010, 31(6), p 2948–2955CrossRef
28.
Zurück zum Zitat P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby, Investigation of Mechanism of Cleavage Fracture Initiation in Intercritically Coarse Grained Heat Affected Zone of HSLA Steel, Mater. Sci. Technol., 2012, 28, p 1261–1268CrossRef P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby, Investigation of Mechanism of Cleavage Fracture Initiation in Intercritically Coarse Grained Heat Affected Zone of HSLA Steel, Mater. Sci. Technol., 2012, 28, p 1261–1268CrossRef
29.
Zurück zum Zitat L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Microstructural Characteristics and Toughness of the Simulated Coarse Grained Heat Affected Zone of High Strength Low Carbon Bainitic Steel, Mater. Sci. Eng. A, 2011, 529, p 192–200CrossRef L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Microstructural Characteristics and Toughness of the Simulated Coarse Grained Heat Affected Zone of High Strength Low Carbon Bainitic Steel, Mater. Sci. Eng. A, 2011, 529, p 192–200CrossRef
30.
Zurück zum Zitat A. Lambert, X. Garat, T. Sturel, A.F. Gourgues, and A. Gingell, Application of Acoustic Emission to the Study of Cleavage Fracture Mechanism in a HSLA Steel, Scr. Mater., 2000, 43, p 161–166CrossRef A. Lambert, X. Garat, T. Sturel, A.F. Gourgues, and A. Gingell, Application of Acoustic Emission to the Study of Cleavage Fracture Mechanism in a HSLA Steel, Scr. Mater., 2000, 43, p 161–166CrossRef
31.
Zurück zum Zitat J. Hu, L.X. Du, J.J. Wang, and C.R. Gao, Effect of Welding Heat Input on Microstructures and Toughness in Simulated CGHAZ of V-N High Strength Steel, Mater. Sci. Eng. A, 2013, 577, p 161–168CrossRef J. Hu, L.X. Du, J.J. Wang, and C.R. Gao, Effect of Welding Heat Input on Microstructures and Toughness in Simulated CGHAZ of V-N High Strength Steel, Mater. Sci. Eng. A, 2013, 577, p 161–168CrossRef
32.
Zurück zum Zitat J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, and R.D.K. Misra, High Toughness in the Intercritically Reheated Coarse-Grained (ICRCG) Heat-Affected Zone (HAZ) of Low Carbon Microalloyed Steel, Mater. Sci. Eng. A, 2014, 590, p 323–328CrossRef J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, and R.D.K. Misra, High Toughness in the Intercritically Reheated Coarse-Grained (ICRCG) Heat-Affected Zone (HAZ) of Low Carbon Microalloyed Steel, Mater. Sci. Eng. A, 2014, 590, p 323–328CrossRef
33.
Zurück zum Zitat M.I. Onsøien, S. Liu, and D.L. Olson, Shielding Gas Oxygen Equivalent in Weld Metal Microstructure Optimization, Weld. J., 1996, 75, p 216s M.I. Onsøien, S. Liu, and D.L. Olson, Shielding Gas Oxygen Equivalent in Weld Metal Microstructure Optimization, Weld. J., 1996, 75, p 216s
34.
Zurück zum Zitat Y. Shao, C.X. Liu, Z.S. Yan, H.J. Li, and Y.C. Liu, Formation Mechanism and Control Methods of Acicular Ferrite in HSLA Steels: A Review, J. Mater. Sci. Technol., 2018, 34, p 737–744CrossRef Y. Shao, C.X. Liu, Z.S. Yan, H.J. Li, and Y.C. Liu, Formation Mechanism and Control Methods of Acicular Ferrite in HSLA Steels: A Review, J. Mater. Sci. Technol., 2018, 34, p 737–744CrossRef
35.
Zurück zum Zitat Z.X. Zhu, L. Kuzmikova, H.J. Li, and F. Barbaro, Effect of Inter-critically Reheating Temperature on Microstructure and Properties of Simulated Inter-critically Reheated Coarse Grained Heat-Affected Zone in X70 Steel, Mater. Sci. Eng. A, 2014, 605, p 8–13CrossRef Z.X. Zhu, L. Kuzmikova, H.J. Li, and F. Barbaro, Effect of Inter-critically Reheating Temperature on Microstructure and Properties of Simulated Inter-critically Reheated Coarse Grained Heat-Affected Zone in X70 Steel, Mater. Sci. Eng. A, 2014, 605, p 8–13CrossRef
36.
Zurück zum Zitat Ö. Üstündağ, S. Gook, A. Gumenyuk, and M. Rethmeier, Hybrid Laser Arc Welding of Thick High-Strength Pipeline Steels of Grade X120 with Adapted Heat Input, J. Mater. Process. Technol., 2020, 275, p 16358CrossRef Ö. Üstündağ, S. Gook, A. Gumenyuk, and M. Rethmeier, Hybrid Laser Arc Welding of Thick High-Strength Pipeline Steels of Grade X120 with Adapted Heat Input, J. Mater. Process. Technol., 2020, 275, p 16358CrossRef
37.
Zurück zum Zitat S. Kou, Welding Metallurgy, Wiley, Hoboken, NJ, 2003 S. Kou, Welding Metallurgy, Wiley, Hoboken, NJ, 2003
38.
Zurück zum Zitat E. Surian, M.R. De Rissone, and L. De Vedia, Influence of Molybdenum on Ferrite High-Strength SMAW All-Weld-Metal Properties, Weld. J., 2005, 84, p 53–62 E. Surian, M.R. De Rissone, and L. De Vedia, Influence of Molybdenum on Ferrite High-Strength SMAW All-Weld-Metal Properties, Weld. J., 2005, 84, p 53–62
39.
Zurück zum Zitat H.I. McHenry and R.P. Reed, Fracture Behavior of the Heat-Affected Zone in 5% Ni Steel Weldments, Weld. J., 1977, 58, p 104–111 H.I. McHenry and R.P. Reed, Fracture Behavior of the Heat-Affected Zone in 5% Ni Steel Weldments, Weld. J., 1977, 58, p 104–111
40.
Zurück zum Zitat N.N. Rykalin, Calculation of Heat Processes in Welding, U.S.S.R, Moscow, 1960 N.N. Rykalin, Calculation of Heat Processes in Welding, U.S.S.R, Moscow, 1960
Metadaten
Titel
Comparative Study of Microstructure and Mechanical Properties of X80 SAW Welds Prepared Using Different Wires and Heat Inputs
verfasst von
Qiaoling Chu
Shuai Xu
Xiongwei Tong
Jie Li
Min Zhang
Fuxue Yan
Wanpeng Zhang
Zongyue Bi
Cheng Yan
Publikationsdatum
21.07.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04986-5

Weitere Artikel der Ausgabe 7/2020

Journal of Materials Engineering and Performance 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.