Skip to main content

2017 | OriginalPaper | Buchkapitel

Comparative Study of Thermal Conductivity of SiC and BeO from Ab Initio Calculations

verfasst von : Linu Malakkal, Barbara Szpunar, Jerzy Szpunar

Erschienen in: Energy Materials 2017

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Silicon Carbide (SiC) and Beryllium Oxide (BeO) are materials proposed to use in accident tolerant fuel. Therefore, we did a systematic study of the thermal conductivity of SiC and BeO and its dependence on temperatures and structure by solving the Boltzmann transport equation using the shengBTE a solver for phonon thermal conductivity (kL) with ab initio techniques. We also predict the structural, elastic, and thermodynamic properties of alpha-SiC, wurtzite (w)-SiC and w-BeO by first principles calculation using Quantum ESPRESSO within quasi-harmonic approximation. kL is also predicted using the Slack model. The thermo-mechanical properties of these materials show significant improvement over Urania with one order of magnitude higher thermal conductivity. Wurtzite structure shows the directional dependence of kL. Hence, we provide the directional thermal conductivity of w-BeO, w-SiC and compare with the thermal conductivity of cubic SiC. The simulated results are compared with the available experimental data and showed excellent agreement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Peiman, I. Pioro, K. Gabriel, in Thermal Aspects of Conventional and Alternative Fuels in Super Critical Water-Cooled Reactor (SCWR) Applications (2007) W. Peiman, I. Pioro, K. Gabriel, in Thermal Aspects of Conventional and Alternative Fuels in Super Critical Water-Cooled Reactor (SCWR) Applications (2007)
2.
Zurück zum Zitat G.L. Harris, in Properties of Silicon Carbide, vol 93, no 5 (1995) G.L. Harris, in Properties of Silicon Carbide, vol 93, no 5 (1995)
3.
Zurück zum Zitat L.M. Ivanova, P.A. Aleksandrov, K.D. Demakov, Thermoelectric properties of vapor-grown polycrystalline cubic SiC. Inorg. Mater. 42(11), 1205–1209 (2006)CrossRef L.M. Ivanova, P.A. Aleksandrov, K.D. Demakov, Thermoelectric properties of vapor-grown polycrystalline cubic SiC. Inorg. Mater. 42(11), 1205–1209 (2006)CrossRef
4.
Zurück zum Zitat K. Karch, P. Pavone, W. Windl, Ab initio calculation of structural, lattice dynamical, and thermal properties of cubic silicon carbide. Int. J. Quantum Chem. 56(1995), 801–817 (1995) K. Karch, P. Pavone, W. Windl, Ab initio calculation of structural, lattice dynamical, and thermal properties of cubic silicon carbide. Int. J. Quantum Chem. 56(1995), 801–817 (1995)
5.
Zurück zum Zitat K. Karch, P. Pavone, W. Windl, O. Schutt, D. Strauch, Ab initio calculation of structural and lattice dynamical properties of silicon carbide. Phys. Rev. B 50(23), 17054–17063 (1994)CrossRef K. Karch, P. Pavone, W. Windl, O. Schutt, D. Strauch, Ab initio calculation of structural and lattice dynamical properties of silicon carbide. Phys. Rev. B 50(23), 17054–17063 (1994)CrossRef
6.
Zurück zum Zitat W.H. Lee, X.H. Yao, First principle investigation of phase transition and thermodynamic properties of SiC. Comput. Mater. Sci. 106, 76–82 (2015)CrossRef W.H. Lee, X.H. Yao, First principle investigation of phase transition and thermodynamic properties of SiC. Comput. Mater. Sci. 106, 76–82 (2015)CrossRef
7.
Zurück zum Zitat Y.-P. Lu, D.-W. He, J. Zhu, X.-D. Yang, First-principles study of pressure-induced phase transition in silicon carbide. Phys. B Condens. Matter 403(19–20), 3543–3546 (2008)CrossRef Y.-P. Lu, D.-W. He, J. Zhu, X.-D. Yang, First-principles study of pressure-induced phase transition in silicon carbide. Phys. B Condens. Matter 403(19–20), 3543–3546 (2008)CrossRef
8.
Zurück zum Zitat M. Methfessel, Calculated elastic constants. Phys. Rev. B 43(8), 6500–6509 (1991)CrossRef M. Methfessel, Calculated elastic constants. Phys. Rev. B 43(8), 6500–6509 (1991)CrossRef
9.
Zurück zum Zitat S. Nowak, Crystal lattice dynamics of various silicon carbide polytypes. Proc. SPIE 4412, 181–186 (2001)CrossRef S. Nowak, Crystal lattice dynamics of various silicon carbide polytypes. Proc. SPIE 4412, 181–186 (2001)CrossRef
10.
Zurück zum Zitat J.F. Vetelino, S.S. Mitra, Lattice dynamics of cubic SiC. Phys. Rev. 178(3), 1349–1352 (1969)CrossRef J.F. Vetelino, S.S. Mitra, Lattice dynamics of cubic SiC. Phys. Rev. 178(3), 1349–1352 (1969)CrossRef
11.
Zurück zum Zitat L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modeling, J. Nucl. Mater. 371(1–3), 329–377 (2007) L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modeling, J. Nucl. Mater. 371(1–3), 329–377 (2007)
12.
Zurück zum Zitat S. Goumri-Said M.B. Kanoun, Ab-initio investigations of the electronic properties of bulk wurtzite Beryllia and its derived nanofilms, Phys. Lett. Sect. A Gen. At. Solid State Phys. 374(38), 3977–3981 (2010) S. Goumri-Said M.B. Kanoun, Ab-initio investigations of the electronic properties of bulk wurtzite Beryllia and its derived nanofilms, Phys. Lett. Sect. A Gen. At. Solid State Phys. 374(38), 3977–3981 (2010)
13.
Zurück zum Zitat D. Groh, R. Pandey, M.B. Sahariah, E. Amzallag, I. Baraille, M. Rérat, First-principles study of the optical properties of BeO in its ambient and high-pressure phases. J. Phys. Chem. Solids 70(5), 789–795 (2009)CrossRef D. Groh, R. Pandey, M.B. Sahariah, E. Amzallag, I. Baraille, M. Rérat, First-principles study of the optical properties of BeO in its ambient and high-pressure phases. J. Phys. Chem. Solids 70(5), 789–795 (2009)CrossRef
14.
Zurück zum Zitat A.J. Cinthia, G.S. Priyanga, R. Rajeswarapalanichamy, K. Iyakutti, Structural, electronic and mechanical properties of alkaline earth metal oxides MO (M = Be, Mg, Ca, Sr, Ba). J. Phys. Chem. Solids 79, 23–42 (2015)CrossRef A.J. Cinthia, G.S. Priyanga, R. Rajeswarapalanichamy, K. Iyakutti, Structural, electronic and mechanical properties of alkaline earth metal oxides MO (M = Be, Mg, Ca, Sr, Ba). J. Phys. Chem. Solids 79, 23–42 (2015)CrossRef
15.
Zurück zum Zitat W. Li, J. Carrete, N.A. Katcho, N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons, Comput. Phys. Commun. 185(6), 1747–1758 (2014) W. Li, J. Carrete, N.A. Katcho, N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons, Comput. Phys. Commun. 185(6), 1747–1758 (2014)
16.
Zurück zum Zitat G.A. Slack, Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. J. Appl. Phys. 35(12), 3460–3466 (1964)CrossRef G.A. Slack, Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. J. Appl. Phys. 35(12), 3460–3466 (1964)CrossRef
17.
Zurück zum Zitat P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)CrossRef P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)CrossRef
18.
Zurück zum Zitat L. Malakkal, B. Szpunar, J.C. Zuniga, R.K. Siripurapu, J.A. Szpunar, An interface to Quantum ESPRESSO, in Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015) (Wiley, 2015), pp. 155–162 L. Malakkal, B. Szpunar, J.C. Zuniga, R.K. Siripurapu, J.A. Szpunar, An interface to Quantum ESPRESSO, in Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015) (Wiley, 2015), pp. 155–162
19.
Zurück zum Zitat M.A. Blanco, E. Francisco, V. Luaña, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158(1), 57–72 (2004)CrossRef M.A. Blanco, E. Francisco, V. Luaña, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158(1), 57–72 (2004)CrossRef
20.
Zurück zum Zitat L. Malakkal, B. Szpunar, J.C. Zuniga, R.K. Siripurapu, J.A. Szpunar, First principles calculation of thermo-mechanical properties of thoria using Quantum ESPRESSO, Int. J. Comput. Mater. Sci. Eng. 1650008 (2016) L. Malakkal, B. Szpunar, J.C. Zuniga, R.K. Siripurapu, J.A. Szpunar, First principles calculation of thermo-mechanical properties of thoria using Quantum ESPRESSO, Int. J. Comput. Mater. Sci. Eng. 1650008 (2016)
21.
Zurück zum Zitat J. Carrete, N. Mingo, S. Curtarolo, Low thermal conductivity and triaxial phononic anisotropy of SnSe, Appl. Phys. Lett. 105(10) (2014) J. Carrete, N. Mingo, S. Curtarolo, Low thermal conductivity and triaxial phononic anisotropy of SnSe, Appl. Phys. Lett. 105(10) (2014)
22.
Zurück zum Zitat J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Generalized gradient approximation for solids and their surfaces, 136406(April), 1–4 (2007) J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Generalized gradient approximation for solids and their surfaces, 136406(April), 1–4 (2007)
23.
Zurück zum Zitat J. Fan P.K. Chu, in General Properties of Bulk SiC (2014) J. Fan P.K. Chu, in General Properties of Bulk SiC (2014)
24.
Zurück zum Zitat R.M. Hazen, L.W. Finger, High-pressure and high-temperature crystal chemistry of beryllium oxide. J. Appl. Phys. 59(11), 3728–3733 (1986)CrossRef R.M. Hazen, L.W. Finger, High-pressure and high-temperature crystal chemistry of beryllium oxide. J. Appl. Phys. 59(11), 3728–3733 (1986)CrossRef
25.
Zurück zum Zitat L.D. Landau, E.M. Lifshitz, A.M. Kosevich, L.P. Pitaevskii, J.B. Sykes, W.H. Reid, in Theory of Elasticity (1986), p. 187 L.D. Landau, E.M. Lifshitz, A.M. Kosevich, L.P. Pitaevskii, J.B. Sykes, W.H. Reid, in Theory of Elasticity (1986), p. 187
26.
Zurück zum Zitat P.T. Jochym, K. Parlinski, Ab initio lattice dynamics and elastic constants of ZrC. Eur. Phys. J. B 15(2), 265–268 (2000)CrossRef P.T. Jochym, K. Parlinski, Ab initio lattice dynamics and elastic constants of ZrC. Eur. Phys. J. B 15(2), 265–268 (2000)CrossRef
27.
Zurück zum Zitat R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65(5), 349–354 (2002)CrossRef R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65(5), 349–354 (2002)CrossRef
28.
Zurück zum Zitat W. Voigt, No title, in Lehrb. der Kriystallphysik (1928), p. 962 W. Voigt, No title, in Lehrb. der Kriystallphysik (1928), p. 962
29.
Zurück zum Zitat U.D. Wdowik, Structural stability and thermal properties of BeO from the quasiharmonic approximation. J. Phys. Condens. Matter 22(4), 45404 (2010)CrossRef U.D. Wdowik, Structural stability and thermal properties of BeO from the quasiharmonic approximation. J. Phys. Condens. Matter 22(4), 45404 (2010)CrossRef
30.
Zurück zum Zitat H. Song, H. Liu, E. Tian, Structural and thermodynamic properties of hexagonal BeO at high pressures and temperatures. J. Phys. Cond. Matter 19, 456209 (2007)CrossRef H. Song, H. Liu, E. Tian, Structural and thermodynamic properties of hexagonal BeO at high pressures and temperatures. J. Phys. Cond. Matter 19, 456209 (2007)CrossRef
31.
Zurück zum Zitat D.T. Morelli, G.A. Slack, High lattice thermal conductivity solids, High Therm. Conduct. Mater. 37–68 (2006) D.T. Morelli, G.A. Slack, High lattice thermal conductivity solids, High Therm. Conduct. Mater. 37–68 (2006)
32.
Zurück zum Zitat H. Gzyl, Integration of the Boltzmann equation in the relaxation time approximation. J. Stat. Phys. 29(3), 617–622 (1982)CrossRef H. Gzyl, Integration of the Boltzmann equation in the relaxation time approximation. J. Stat. Phys. 29(3), 617–622 (1982)CrossRef
33.
Zurück zum Zitat J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113(4), 1046–1051 (1959)CrossRef J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113(4), 1046–1051 (1959)CrossRef
34.
Zurück zum Zitat Y. Takahashi, M. Murabayashi, Measurement of thermal properties of nuclear materials by laser flash method. J. Nucl. Sci. Technol. 12(3), 133–144 (1975)CrossRef Y. Takahashi, M. Murabayashi, Measurement of thermal properties of nuclear materials by laser flash method. J. Nucl. Sci. Technol. 12(3), 133–144 (1975)CrossRef
35.
Zurück zum Zitat G.A. Slack, S.B. Austerman, Thermal conductivity of BeO single crystals. J. Appl. Phys. 42(12), 4713–4717 (1971)CrossRef G.A. Slack, S.B. Austerman, Thermal conductivity of BeO single crystals. J. Appl. Phys. 42(12), 4713–4717 (1971)CrossRef
36.
Zurück zum Zitat W. Li, N. Mingo, Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles. J. Appl. Phys. 114(18), 1–5 (2013) W. Li, N. Mingo, Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles. J. Appl. Phys. 114(18), 1–5 (2013)
37.
Zurück zum Zitat Y.N. Makurin, I.R. Shein, M.A. Gorbunova, V.S. Kiiko, A.L. Ivanovskii, First-principle quantum-chemical calculations of several thermomechanical parameters of beryllium ceramics. Refract. Ind. Ceram 47(5), 310–313 (2006)CrossRef Y.N. Makurin, I.R. Shein, M.A. Gorbunova, V.S. Kiiko, A.L. Ivanovskii, First-principle quantum-chemical calculations of several thermomechanical parameters of beryllium ceramics. Refract. Ind. Ceram 47(5), 310–313 (2006)CrossRef
38.
Zurück zum Zitat G.A. Slack, No title, Solid State Phys. 34, 1–71 (1979) G.A. Slack, No title, Solid State Phys. 34, 1–71 (1979)
39.
Zurück zum Zitat G.A. Slack, S.F. Bartram, Thermal expansion of some diamond like crystals. J. Appl. Phys. 46(1), 89–98 (1975)CrossRef G.A. Slack, S.F. Bartram, Thermal expansion of some diamond like crystals. J. Appl. Phys. 46(1), 89–98 (1975)CrossRef
Metadaten
Titel
Comparative Study of Thermal Conductivity of SiC and BeO from Ab Initio Calculations
verfasst von
Linu Malakkal
Barbara Szpunar
Jerzy Szpunar
Copyright-Jahr
2017
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-52333-0_34

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.