Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

Comparative Study on Fractional Order PID and PID Controllers on Noise Suppression for Manipulator Trajectory Control

verfasst von : Vineet Kumar, K. P. S. Rana

Erschienen in: Fractional Order Control and Synchronization of Chaotic Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main contribution of this chapter is to demonstrate the sensor and controller noise suppression capabilities of the best tuned Fractional Order-Proportional plus Integral plus Derivative (FO-PID) and classical PID controllers in closed-loop. A complex non-linear and coupled system, a 2-link rigid planar manipulator was considered for the study as it encounters noise in many forms such as sensor and controller noise during the operation in industry. Uniform White Noise (UWN) and Gaussian White Noise (GWN) were considered both for the sensor and the controller in the closed-loop and a comparative study was performed for FO-PID and PID controllers. Both the controllers were tuned using Genetic Algorithm and all the simulations were performed in LabVIEW environment. The simulation results have revealed that FO-PID controller demonstrates superior sensor and controller noise suppression as compared to conventional PID controller in the closed-loop.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aström, K. J., & Hägglund, T. (2006). Advanced PID controllers (1st ed.). Research Triangle Park, NC: ISA. 27709. Aström, K. J., & Hägglund, T. (2006). Advanced PID controllers (1st ed.). Research Triangle Park, NC: ISA. 27709.
2.
Zurück zum Zitat Ayala, H. V. H., & Coelho, L. D. S. (2012). Tuning of PID controller based on a multi-objective genetic algorithm applied to a robotic manipulator. Expert Systems with Applications, 39(10), 8968–8974.CrossRef Ayala, H. V. H., & Coelho, L. D. S. (2012). Tuning of PID controller based on a multi-objective genetic algorithm applied to a robotic manipulator. Expert Systems with Applications, 39(10), 8968–8974.CrossRef
3.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995. Springer. doi:10.1007/s00521-014-1560-x. Azar, A. T., & Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995. Springer. doi:10.​1007/​s00521-014-1560-x.
4.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2015). Deadbeat control for multivariable systems with time varying delays. In Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 97–132). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.1007/978-3-319-13132-0_6. Azar, A. T., & Serrano, F. E. (2015). Deadbeat control for multivariable systems with time varying delays. In Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 97–132). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.​1007/​978-3-319-13132-0_​6.
5.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2015). Adaptive sliding mode control of the furuta pendulum. In: A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576, pp. 1–42). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.1007/978-3-319-11173-5_1. Azar, A. T., & Serrano, F. E. (2015). Adaptive sliding mode control of the furuta pendulum. In: A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576, pp. 1–42). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.​1007/​978-3-319-11173-5_​1.
6.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2015). Design and modeling of anti wind up PID controllers. In: Q. Zhu & A. T. Azar (Eds.), Complex system modeling and control through intelligent soft computations. Studies in fuzziness and soft computing (Vol. 319, pp. 1–44). Springer: Germany. doi:10.1007/9783319128832_1. Azar, A. T., & Serrano, F. E. (2015). Design and modeling of anti wind up PID controllers. In: Q. Zhu & A. T. Azar (Eds.), Complex system modeling and control through intelligent soft computations. Studies in fuzziness and soft computing (Vol. 319, pp. 1–44). Springer: Germany. doi:10.​1007/​9783319128832_​1.
7.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581). Springer: Germany. ISBN: 9783319131313. Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581). Springer: Germany. ISBN: 9783319131313.
8.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Studies in computational intelligence (Vol. 575) SpringerVerlag: Germany. ISBN: 9783319110165. Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Studies in computational intelligence (Vol. 575) SpringerVerlag: Germany. ISBN: 9783319110165.
9.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015) Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) Book Series, IGI Global: USA. Azar, A. T., & Vaidyanathan, S. (2015) Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) Book Series, IGI Global: USA.
10.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany. ISBN: 978-3-319-30338-3. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany. ISBN: 978-3-319-30338-3.
11.
Zurück zum Zitat Azar, A. T., Zhu, Q. (2015). Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576). SpringerVerlag: Germany. ISBN: 9783319111728. Azar, A. T., Zhu, Q. (2015). Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576). SpringerVerlag: Germany. ISBN: 9783319111728.
12.
Zurück zum Zitat Bingul, Z., & Karahan, O. (2011). A fuzzy logic controller tuned with PSO for a 2 DOF robot trajectory control. Expert Systems with Applications, 38(1), 1017–1031.CrossRef Bingul, Z., & Karahan, O. (2011). A fuzzy logic controller tuned with PSO for a 2 DOF robot trajectory control. Expert Systems with Applications, 38(1), 1017–1031.CrossRef
13.
Zurück zum Zitat Bingul, Z., & Karahan, O. (2011). Fractional PID controllers tuned by evolutionary algorithms for robot trajectory control. Turk Journal of Electrical Engineering and Computer Science, 20(1), 1123–1136. Bingul, Z., & Karahan, O. (2011). Fractional PID controllers tuned by evolutionary algorithms for robot trajectory control. Turk Journal of Electrical Engineering and Computer Science, 20(1), 1123–1136.
14.
Zurück zum Zitat Bingul, Z., & Karahan, O. (2011, April 13–15). Tuning of fractional PID controllers using PSO algorithm for robot trajectory control. In Proceedings of IEEE international conference on mechatronics. Turkey, pp. 955–960. Bingul, Z., & Karahan, O. (2011, April 13–15). Tuning of fractional PID controllers using PSO algorithm for robot trajectory control. In Proceedings of IEEE international conference on mechatronics. Turkey, pp. 955–960.
15.
Zurück zum Zitat Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 681–697). Springer-Verlag: Germany. Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 681–697). Springer-Verlag: Germany.
16.
Zurück zum Zitat Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany. Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.
17.
Zurück zum Zitat Chaillet, A., Loria, A., Kelly, R. (2006, December 13–15). Robustness of PID controlled manipulators with respect to external disturbance. In Proceedings of IEEE conference on Decision and Control. San Diego, USA (pp. 2949–2954). Chaillet, A., Loria, A., Kelly, R. (2006, December 13–15). Robustness of PID controlled manipulators with respect to external disturbance. In Proceedings of IEEE conference on Decision and Control. San Diego, USA (pp. 2949–2954).
18.
Zurück zum Zitat Chen, C. S. (2008). Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators. IEEE Transactions on Industrial Electronics, 55(9), 3402–3414.CrossRef Chen, C. S. (2008). Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators. IEEE Transactions on Industrial Electronics, 55(9), 3402–3414.CrossRef
19.
Zurück zum Zitat Craig, J. J. (1996). Introduction to robotics: mechanics and control. New York: Addison-Wesley. Craig, J. J. (1996). Introduction to robotics: mechanics and control. New York: Addison-Wesley.
20.
Zurück zum Zitat Delavari, H., Ghaderi, R., Ranjbar, A., HosseinNia, & S. H., Momani, S. (2010). Adaptive fractional PID controller for robotic manipulator. In: Proceeding of 4th IFAC Workshop Fractional Differentiation and its Applications. Badajoz, Spain (pp. 1–7). Delavari, H., Ghaderi, R., Ranjbar, A., HosseinNia, & S. H., Momani, S. (2010). Adaptive fractional PID controller for robotic manipulator. In: Proceeding of 4th IFAC Workshop Fractional Differentiation and its Applications. Badajoz, Spain (pp. 1–7).
21.
Zurück zum Zitat El-Khazali, R. (2013). Fractional-order PIλDµ controller design. Computer and Mathematics with Application, 66(5), 639646.MathSciNetCrossRef El-Khazali, R. (2013). Fractional-order PIλDµ controller design. Computer and Mathematics with Application, 66(5), 639646.MathSciNetCrossRef
22.
Zurück zum Zitat Franklin, G. F., Powell, J. D., & Workman, M. L. (1998). Digital control of dynamic systems (3rd ed.). New York: Addison-Wesley Longman.MATH Franklin, G. F., Powell, J. D., & Workman, M. L. (1998). Digital control of dynamic systems (3rd ed.). New York: Addison-Wesley Longman.MATH
23.
Zurück zum Zitat Kumar, V., Rana, K. P. S., Kumar, A., Sharma, R., Mishra, P., & Nair, S. S. (2013, December 26–28). Development of a genetic algorithm toolkit in LabVIEW. In: Proceedings of the 3rd International Conference on Soft Computing for Problem Solving (SocProS-13). Advances in intelligent systems and computing—Series (Vol. 259, pp. 281–296). Springer: Greater Noida Extension Centre of IIT Roorkee, India. doi:10.1007/978-81-322-1771-8_25. Kumar, V., Rana, K. P. S., Kumar, A., Sharma, R., Mishra, P., & Nair, S. S. (2013, December 26–28). Development of a genetic algorithm toolkit in LabVIEW. In: Proceedings of the 3rd International Conference on Soft Computing for Problem Solving (SocProS-13). Advances in intelligent systems and computing—Series (Vol. 259, pp. 281–296). Springer: Greater Noida Extension Centre of IIT Roorkee, India. doi:10.​1007/​978-81-322-1771-8_​25.
24.
Zurück zum Zitat Kumar, V., Rana, K. P. S., Kumar, J., Mishra, P., & Nair, S. S. (2016). A robust fractional order fuzzy p + fuzzy i +fuzzy d controller for nonlinear and uncertain system. International Journal of Automation and Computing. Springer publication. doi:10.1007/s11633-016-0981-7. Kumar, V., Rana, K. P. S., Kumar, J., Mishra, P., & Nair, S. S. (2016). A robust fractional order fuzzy p + fuzzy i +fuzzy d controller for nonlinear and uncertain system. International Journal of Automation and Computing. Springer publication. doi:10.​1007/​s11633-016-0981-7.
25.
Zurück zum Zitat Kumar, V., Rana, K. P. S., & Mishra, P. (2016). Robust speed control of hybrid electric vehicle using fractional order fuzzy pd & pi controllers in cascade control loop. Journal of the Franklin Institute, 353(8), 1713–1741.MathSciNetCrossRefMATH Kumar, V., Rana, K. P. S., & Mishra, P. (2016). Robust speed control of hybrid electric vehicle using fractional order fuzzy pd & pi controllers in cascade control loop. Journal of the Franklin Institute, 353(8), 1713–1741.MathSciNetCrossRefMATH
26.
Zurück zum Zitat Ladaci, S., Loiseau, J. J., & Charef, A. (2010). Adaptive internal model control with fractional order parameter. International Journal of Adaptive Control and Signal Processing, 24(11), 944–960.MathSciNetCrossRefMATH Ladaci, S., Loiseau, J. J., & Charef, A. (2010). Adaptive internal model control with fractional order parameter. International Journal of Adaptive Control and Signal Processing, 24(11), 944–960.MathSciNetCrossRefMATH
27.
Zurück zum Zitat Li, T. H. S., & Huang, Y. C. (2010). MIMO adaptive fuzzy terminal sliding mode controller for robotic manipulators. Information Sciences, 180(23), 4641–4660.MathSciNetCrossRefMATH Li, T. H. S., & Huang, Y. C. (2010). MIMO adaptive fuzzy terminal sliding mode controller for robotic manipulators. Information Sciences, 180(23), 4641–4660.MathSciNetCrossRefMATH
28.
Zurück zum Zitat Lin, J., & Huang, Z. Z. (2006). A hierarchical supervisory fuzzy controller for robot manipulators with oscillatory bases. In Proceeding of IEEE International Conference on Fuzzy Systems. Canada (pp. 2400–2407) Lin, J., & Huang, Z. Z. (2006). A hierarchical supervisory fuzzy controller for robot manipulators with oscillatory bases. In Proceeding of IEEE International Conference on Fuzzy Systems. Canada (pp. 2400–2407)
29.
Zurück zum Zitat Luo, Y., & Chen, Y. Q. (2009). Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica, 45(10), 2446–2450.MathSciNetCrossRefMATH Luo, Y., & Chen, Y. Q. (2009). Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica, 45(10), 2446–2450.MathSciNetCrossRefMATH
30.
Zurück zum Zitat Mekki, H., Boukhetala, D., & Azar, A. T. (2015). Sliding modes for fault tolerant control. In Advances and applications in sliding mode control systems. Studies in computational intelligence book series (Vol. 576, pp. 407–433). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.1007/978-3-319-11173-5_15. Mekki, H., Boukhetala, D., & Azar, A. T. (2015). Sliding modes for fault tolerant control. In Advances and applications in sliding mode control systems. Studies in computational intelligence book series (Vol. 576, pp. 407–433). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.​1007/​978-3-319-11173-5_​15.
31.
Zurück zum Zitat Mishra, P., Kumar, V., & Rana, K. P. S. (2015). A fractional order fuzzy PID controller for binary distillation column control. Expert Systems with Applications, 42(22), 8533–8549.CrossRef Mishra, P., Kumar, V., & Rana, K. P. S. (2015). A fractional order fuzzy PID controller for binary distillation column control. Expert Systems with Applications, 42(22), 8533–8549.CrossRef
32.
Zurück zum Zitat Monje, C. A., Vinagre, B. M., Feliu, V., & Chen, Y. Q. (2008). Tuning and auto-tuning of fractional order controller for industry applications. Control Engineering Practice, 16(7), 798–812.CrossRef Monje, C. A., Vinagre, B. M., Feliu, V., & Chen, Y. Q. (2008). Tuning and auto-tuning of fractional order controller for industry applications. Control Engineering Practice, 16(7), 798–812.CrossRef
33.
Zurück zum Zitat Ogata, K. (2009). Modern control engineering (5th ed.). India: Prentice Hall.MATH Ogata, K. (2009). Modern control engineering (5th ed.). India: Prentice Hall.MATH
34.
Zurück zum Zitat Oya, M., Wada, M., Honda, H., & Kobayashi, T. (2003). Experimental studies of a robust tracking controller for robot manipulators with position measurements with position measurements contaminated by noises. In Proceeding of 4th International Conference on Control and Automation. Montreal, Canada (pp. 664–668) Oya, M., Wada, M., Honda, H., & Kobayashi, T. (2003). Experimental studies of a robust tracking controller for robot manipulators with position measurements with position measurements contaminated by noises. In Proceeding of 4th International Conference on Control and Automation. Montreal, Canada (pp. 664–668)
35.
Zurück zum Zitat Pan, I., & Das, S. (2012). Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system. Electrical Power and Energy Systems, 43(1), 393–407.CrossRef Pan, I., & Das, S. (2012). Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system. Electrical Power and Energy Systems, 43(1), 393–407.CrossRef
36.
Zurück zum Zitat Peng, T., & Woo, P. Y. (2002). Neural-fuzzy control system for robotic manipulators. IEEE Control Systems Magazine, 22(1), 53–63.CrossRef Peng, T., & Woo, P. Y. (2002). Neural-fuzzy control system for robotic manipulators. IEEE Control Systems Magazine, 22(1), 53–63.CrossRef
37.
Zurück zum Zitat Petras, I. (2009). Fractional—order feedback control of a DC motor. Journal of Electrical Engineering, 60(3), 117–128. Petras, I. (2009). Fractional—order feedback control of a DC motor. Journal of Electrical Engineering, 60(3), 117–128.
38.
Zurück zum Zitat Rana, K. P. S., Kumar, V., Mittra, N., & Pramanik, N. (2016). Implementation of fractional order integrator/differentiator on field programmable gate array. Alexandria Engineering Journal. doi:10.1016/j.aej.2016.03.030. Rana, K. P. S., Kumar, V., Mittra, N., & Pramanik, N. (2016). Implementation of fractional order integrator/differentiator on field programmable gate array. Alexandria Engineering Journal. doi:10.​1016/​j.​aej.​2016.​03.​030.
39.
Zurück zum Zitat Sharma, R., Rana, K. P. S., & Kumar, V. (2014). Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Systems with Applications, 41(9), 4274–4289.CrossRef Sharma, R., Rana, K. P. S., & Kumar, V. (2014). Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Systems with Applications, 41(9), 4274–4289.CrossRef
40.
Zurück zum Zitat Silva, M. F., Machada, J. A. T., & Lopes, A. M. (2004). Fractional order control of a hexapod robot. Nonlinear Dynamics, 38(1–4), 417–433.CrossRefMATH Silva, M. F., Machada, J. A. T., & Lopes, A. M. (2004). Fractional order control of a hexapod robot. Nonlinear Dynamics, 38(1–4), 417–433.CrossRefMATH
41.
Zurück zum Zitat Song, Z., Yi, J., Zhao, D., & Li, X. (2005). A computed torque controller for uncertain robotic manipulator systems: Fuzzy approach. Fuzzy Sets and Systems, 154(2), 208–226.MathSciNetCrossRefMATH Song, Z., Yi, J., Zhao, D., & Li, X. (2005). A computed torque controller for uncertain robotic manipulator systems: Fuzzy approach. Fuzzy Sets and Systems, 154(2), 208–226.MathSciNetCrossRefMATH
42.
Zurück zum Zitat Tang, W., Chen, G., & Lee, R. (2001). A modified fuzzy PI controller for a flexible-joint robot arm with uncertainties. Fuzzy Sets and Systems, 118(1), 109–119.MathSciNetCrossRef Tang, W., Chen, G., & Lee, R. (2001). A modified fuzzy PI controller for a flexible-joint robot arm with uncertainties. Fuzzy Sets and Systems, 118(1), 109–119.MathSciNetCrossRef
43.
Zurück zum Zitat Tang, Y., Cui, M., Hua, C., Li, L., & Yang, Y. (2012). Optimum design of fractional order PIλDμ controller for AVR system using chaotic ant swarm. Expert Systems with Applications, 39(8), 6887–6896.CrossRef Tang, Y., Cui, M., Hua, C., Li, L., & Yang, Y. (2012). Optimum design of fractional order PIλDμ controller for AVR system using chaotic ant swarm. Expert Systems with Applications, 39(8), 6887–6896.CrossRef
44.
Zurück zum Zitat Tian, L. F., & Collins, C. (2005). Adaptive neuro-fuzzy control of a flexible manipulator. Mechatronics, 15(10), 1305–1320.CrossRef Tian, L. F., & Collins, C. (2005). Adaptive neuro-fuzzy control of a flexible manipulator. Mechatronics, 15(10), 1305–1320.CrossRef
45.
Zurück zum Zitat Tsai, C. H., Wang, C. H., & Lin, W. S. (2000). Robust fuzzy model-following control of robot manipulators. IEEE Transactions on Fuzzy Systems, 8(4), 462–469.CrossRef Tsai, C. H., Wang, C. H., & Lin, W. S. (2000). Robust fuzzy model-following control of robot manipulators. IEEE Transactions on Fuzzy Systems, 8(4), 462–469.CrossRef
46.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 19–38). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.1007/978-3-319-13132-0_2. Vaidyanathan, S., & Azar, A. T. (2015). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 19–38). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.​1007/​978-3-319-13132-0_​2.
47.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015). Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in Computational Intelligence (Vol. 581, pp. 3–17). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.1007/978-3-319-13132-0_1. Vaidyanathan, S., & Azar, A. T. (2015). Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in Computational Intelligence (Vol. 581, pp. 3–17). Springer-Verlag GmbH: Berlin/Heidelberg. doi:10.​1007/​978-3-319-13132-0_​1.
48.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany. Vaidyanathan, S., & Azar, A. T. (2016). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.
49.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization of a novel 3-D Jerk System with an exponential nonlinearity. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization of a novel 3-D Jerk System with an exponential nonlinearity. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.
50.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of Halvorsen circulant chaotic systems. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of Halvorsen circulant chaotic systems. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.
51.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany. Vaidyanathan, S., & Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.
52.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany. Vaidyanathan, S., & Azar, A. T. (2016). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.
53.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany. Vaidyanathan, S., & Azar, A. T. (2016). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Springer-Verlag: Germany.
54.
Zurück zum Zitat Valério, D., & Costa, J. S. D. (2013). An introduction to fractional control. London, United Kingdom: IET.MATH Valério, D., & Costa, J. S. D. (2013). An introduction to fractional control. London, United Kingdom: IET.MATH
55.
Zurück zum Zitat Yi, S. Y., & Chung, M. J. (1997). A robust fuzzy logic controller for robot manipulators with uncertainties. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 27(4), 706–713.CrossRef Yi, S. Y., & Chung, M. J. (1997). A robust fuzzy logic controller for robot manipulators with uncertainties. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 27(4), 706–713.CrossRef
56.
Zurück zum Zitat Yildirim, S., & Eski, I. (2010). Noise analysis of robot manipulator using neural networks. Robotics and Computer-Integrated Manufacturing, 26(4), 282–290.CrossRef Yildirim, S., & Eski, I. (2010). Noise analysis of robot manipulator using neural networks. Robotics and Computer-Integrated Manufacturing, 26(4), 282–290.CrossRef
57.
Zurück zum Zitat Zamani, M., Ghartemani, M. K., Sadati, N., & Parniani, M. (2009). Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice, 17(12), 1380–1387.CrossRef Zamani, M., Ghartemani, M. K., Sadati, N., & Parniani, M. (2009). Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice, 17(12), 1380–1387.CrossRef
58.
Zurück zum Zitat Zhu, D., & Fang, Y. (2007). Adaptive control of parallel manipulators via fuzzy-neural network algorithm. Journal of Control Theory and Applications, 5(3), 295–300.MathSciNetCrossRef Zhu, D., & Fang, Y. (2007). Adaptive control of parallel manipulators via fuzzy-neural network algorithm. Journal of Control Theory and Applications, 5(3), 295–300.MathSciNetCrossRef
59.
Zurück zum Zitat Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Studies in fuzziness and soft computing. (Vol. 319). Springer-Verlag: Germany. ISBN: 9783319128825. Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Studies in fuzziness and soft computing. (Vol. 319). Springer-Verlag: Germany. ISBN: 9783319128825.
Metadaten
Titel
Comparative Study on Fractional Order PID and PID Controllers on Noise Suppression for Manipulator Trajectory Control
verfasst von
Vineet Kumar
K. P. S. Rana
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50249-6_1