Skip to main content

2017 | OriginalPaper | Buchkapitel

Comparator Logic Circuits Based on DNA Strand Displacement by DNA Hairpin

verfasst von : Zicheng Wang, Hongbo Meng

Erschienen in: Bio-inspired Computing: Theories and Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

DNA computing is a hot research topic in recent years, molecular logic gate is an important foundation of DNA computer architecture and implementation. Local hairpin DNA chain substitution reaction can increase the reliability of molecular logic gates, Make the reaction more efficient and more thoroughly. In this paper, using local hairpin DNA strand displacement, the comparator circuit is coded and simulated base on the double logic circuit. The simulation results further confirmed the feasibility and effectiveness of the DNA strand displacement reaction in the study of biochemical logic circuits, The comparator circuit can be used for biological computer and building large-scale molecular logic circuits in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRef Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRef
2.
Zurück zum Zitat Seeman, C.: DNA nanotechnology: novel DNA constructions. Ann. Rev. Biophys. Biomol. 27, 225–248 (1998)CrossRef Seeman, C.: DNA nanotechnology: novel DNA constructions. Ann. Rev. Biophys. Biomol. 27, 225–248 (1998)CrossRef
3.
Zurück zum Zitat Mao, C., Sun, W., Seeman, N.C.: Designed two dimensional DNA holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121(23), 5437–5443 (1999)CrossRef Mao, C., Sun, W., Seeman, N.C.: Designed two dimensional DNA holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121(23), 5437–5443 (1999)CrossRef
4.
Zurück zum Zitat Thubagere, A.J., Thachuk, C., Berleant, J.: Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Nat. Commun. 8, 14373 (2017)CrossRef Thubagere, A.J., Thachuk, C., Berleant, J.: Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Nat. Commun. 8, 14373 (2017)CrossRef
5.
Zurück zum Zitat Mao, C., Labean, T.H., Reif, J.H.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–496 (2000)CrossRef Mao, C., Labean, T.H., Reif, J.H.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–496 (2000)CrossRef
6.
Zurück zum Zitat Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)CrossRef Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)CrossRef
7.
Zurück zum Zitat Song, T., Garg, S., Mokhtar, R.: Analog computation by DNA strand displacement circuits. ACS Synth. Biol. 5(8), 898–912 (2016)CrossRef Song, T., Garg, S., Mokhtar, R.: Analog computation by DNA strand displacement circuits. ACS Synth. Biol. 5(8), 898–912 (2016)CrossRef
8.
Zurück zum Zitat Georg, S., David, S.: Enzyme-free nucleic acid logic circuits. Science 314(8), 1585–1588 (2006) Georg, S., David, S.: Enzyme-free nucleic acid logic circuits. Science 314(8), 1585–1588 (2006)
10.
Zurück zum Zitat Qian, L.L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRef Qian, L.L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRef
11.
Zurück zum Zitat Qian, L.L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)CrossRef Qian, L.L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)CrossRef
12.
Zurück zum Zitat Brun, Y.: Arithmetic computation in the tile assembly model: addition and multiplication. Theor. Comput. Sci. 378(1), 17–31 (2006)CrossRefMATHMathSciNet Brun, Y.: Arithmetic computation in the tile assembly model: addition and multiplication. Theor. Comput. Sci. 378(1), 17–31 (2006)CrossRefMATHMathSciNet
13.
Zurück zum Zitat Bartlett, E.J., Brissett, N.C., Plocinski, P.: Molecular basis for DNA strand displacement by NHEJ repair polymerases. Nucleic Acids Res. 44(5), 2173–2186 (2016)CrossRef Bartlett, E.J., Brissett, N.C., Plocinski, P.: Molecular basis for DNA strand displacement by NHEJ repair polymerases. Nucleic Acids Res. 44(5), 2173–2186 (2016)CrossRef
14.
Zurück zum Zitat Zhang, Z., Fan, T.W., Hsing, I.M.: Integrating DNA strand displacement circuitry to nonlinear hybridization chain reaction. Nanoscale 9(8), 2748–2754 (2007)CrossRef Zhang, Z., Fan, T.W., Hsing, I.M.: Integrating DNA strand displacement circuitry to nonlinear hybridization chain reaction. Nanoscale 9(8), 2748–2754 (2007)CrossRef
15.
Zurück zum Zitat David, Y., Erik, W.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131(47), 17303–17314 (2009)CrossRef David, Y., Erik, W.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131(47), 17303–17314 (2009)CrossRef
16.
Zurück zum Zitat Yuan, J., Nell, D.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)CrossRef Yuan, J., Nell, D.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)CrossRef
17.
Zurück zum Zitat Matthew, R., Simon, Y., Luca, C., Andrew, P.: Abstractions for DNA circuit design. R. Soc. Interface 470–486 (2011) Matthew, R., Simon, Y., Luca, C., Andrew, P.: Abstractions for DNA circuit design. R. Soc. Interface 470–486 (2011)
18.
Zurück zum Zitat Yurke, B., Mills, A.P.: Using DNA to power nanostructures. Genet. J. Program. Evolvable Mach. 4, 111–122 (2003)CrossRef Yurke, B., Mills, A.P.: Using DNA to power nanostructures. Genet. J. Program. Evolvable Mach. 4, 111–122 (2003)CrossRef
19.
Zurück zum Zitat Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. Interface 6(4), 419–436 (2009) Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. Interface 6(4), 419–436 (2009)
20.
Zurück zum Zitat Yang, X., Tang, Y., Traynor, S.M.: Regulation of DNA strand displacement using an allosteric DNA toehold. J. Am. Chem. Soc. 138(42), 14076–14082 (2016)CrossRef Yang, X., Tang, Y., Traynor, S.M.: Regulation of DNA strand displacement using an allosteric DNA toehold. J. Am. Chem. Soc. 138(42), 14076–14082 (2016)CrossRef
21.
Zurück zum Zitat Lakin, M.R., Youssef, S., Cardrlli, L.: Abstractions for DNA circuit design. J. R. Soc. Interface 9(68), 470–486 (2012)CrossRef Lakin, M.R., Youssef, S., Cardrlli, L.: Abstractions for DNA circuit design. J. R. Soc. Interface 9(68), 470–486 (2012)CrossRef
22.
Zurück zum Zitat Matthew, R., David, P.: Design and analysis of DNA strand displacement devices using probabilistic model checking. J. R. Soc. Interface 7(72), 1470–1485 (2012) Matthew, R., David, P.: Design and analysis of DNA strand displacement devices using probabilistic model checking. J. R. Soc. Interface 7(72), 1470–1485 (2012)
24.
Zurück zum Zitat Shi, X.L., Lu, W., Wang, Z.Y., Pan, L.Q., Cui, G.Z., Xu, J., Thomas, H.L.: Programmable DNA tile self-assembly using a hierarchical sub-tile strategy. Nanotechnology 25(7), 075602 (2014)CrossRef Shi, X.L., Lu, W., Wang, Z.Y., Pan, L.Q., Cui, G.Z., Xu, J., Thomas, H.L.: Programmable DNA tile self-assembly using a hierarchical sub-tile strategy. Nanotechnology 25(7), 075602 (2014)CrossRef
25.
Zurück zum Zitat Sun, J., Wu, Y., Cui, G.: Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control. Nonlinear Dynam. 88(3), 1677–1690 (2014)CrossRef Sun, J., Wu, Y., Cui, G.: Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control. Nonlinear Dynam. 88(3), 1677–1690 (2014)CrossRef
26.
Zurück zum Zitat Sun, J., Wang, Y., Wang, Y.: Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control. Nonlinear Dynam. 85, 1105–1117 (2016)CrossRefMATHMathSciNet Sun, J., Wang, Y., Wang, Y.: Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control. Nonlinear Dynam. 85, 1105–1117 (2016)CrossRefMATHMathSciNet
27.
Zurück zum Zitat Sun, J., Shen, Y.: Quasi-ideal memory system. IEEE Trans. Cybern. 45(7), 1353–1362 (2015)CrossRef Sun, J., Shen, Y.: Quasi-ideal memory system. IEEE Trans. Cybern. 45(7), 1353–1362 (2015)CrossRef
28.
Zurück zum Zitat Yang, J., Jiang, S.X., Liu, X.R., Pan, L.Q., Zhang, Q.: Aptamer-binding directed DNA origami pattern for logic gates. ACS Appl. Mater. Inter. 8, 34054–34060 (2016)CrossRef Yang, J., Jiang, S.X., Liu, X.R., Pan, L.Q., Zhang, Q.: Aptamer-binding directed DNA origami pattern for logic gates. ACS Appl. Mater. Inter. 8, 34054–34060 (2016)CrossRef
29.
Zurück zum Zitat Yang, J., Dong, C., Dong, Y.F., Liu, S., Pan, L.Q., Zhang, C.: Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs. ACS Appl. Mater. Inter. 6(16), 14486–14492 (2014)CrossRef Yang, J., Dong, C., Dong, Y.F., Liu, S., Pan, L.Q., Zhang, C.: Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs. ACS Appl. Mater. Inter. 6(16), 14486–14492 (2014)CrossRef
30.
Zurück zum Zitat Shi, X.L., Wang, Z.Y., Deng, C.Y., Song, T., Pan, L.Q., Chen, Z.H.: A novel bio-sensor based on DNA strand displacement. PLoS ONE 9(10), e108856 (2014)CrossRef Shi, X.L., Wang, Z.Y., Deng, C.Y., Song, T., Pan, L.Q., Chen, Z.H.: A novel bio-sensor based on DNA strand displacement. PLoS ONE 9(10), e108856 (2014)CrossRef
31.
Zurück zum Zitat Matthew, L., Simon, Y.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)CrossRef Matthew, L., Simon, Y.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)CrossRef
Metadaten
Titel
Comparator Logic Circuits Based on DNA Strand Displacement by DNA Hairpin
verfasst von
Zicheng Wang
Hongbo Meng
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7179-9_36