Skip to main content

2021 | OriginalPaper | Buchkapitel

Comparing the Application of Gas Sensor Fabrication of Nanomaterials ZnO Fabricated by Hydrothermal and Chemical Vapor Deposition Method

verfasst von : Hoang Van Han, Dao Huy Du, Do Anh Tuan

Erschienen in: Advances in Engineering Research and Application

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this report, we introduce a method of ZnO nanomaterials fabrication. Particularly, we study the structure of the material, compare the structure of the fabricated materials. The size of the created material is about 30–40 nm in diameter, the length is from 1 to 10 nm. The material responds well to NO2, the resistance of the material changes 25 times with 10 ppm of NO2 at 205 °C. Gas-sensing characterizations revealed that the ZnO sensors exhibited a relatively high response to sub-ppm NO2 with excellent stability of switching from NO2 to air without significant response reduction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Heo, Y.W., et al.: ZnO nanowire growth and devices. Mater. Sci. Eng. R Reports 47(1–2), 1–47 (2004)CrossRef Heo, Y.W., et al.: ZnO nanowire growth and devices. Mater. Sci. Eng. R Reports 47(1–2), 1–47 (2004)CrossRef
2.
Zurück zum Zitat Rodnyi, P., Khodyuk, I.: Optical and luminescence properties of zinc oxide (Review). Opt. Spectrosc. 111(5), 776–785 (2011)CrossRef Rodnyi, P., Khodyuk, I.: Optical and luminescence properties of zinc oxide (Review). Opt. Spectrosc. 111(5), 776–785 (2011)CrossRef
3.
Zurück zum Zitat Wang, C., Wang, Y., Zhang, G., Peng, C., Yang, G.: Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires. Phys. Chem. Chem. Phys. 16(8), 3771–3776 (2014)CrossRef Wang, C., Wang, Y., Zhang, G., Peng, C., Yang, G.: Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires. Phys. Chem. Chem. Phys. 16(8), 3771–3776 (2014)CrossRef
4.
Zurück zum Zitat Samanta, P.K., Chaudhuri, P.R.: Substrate effect on morphology and photoluminescence from ZnO monopods and bipods. Front. Optoelectron. China 4(2), 130–136 (2011)CrossRef Samanta, P.K., Chaudhuri, P.R.: Substrate effect on morphology and photoluminescence from ZnO monopods and bipods. Front. Optoelectron. China 4(2), 130–136 (2011)CrossRef
5.
Zurück zum Zitat Wan, Q., et al.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654 (2004)CrossRef Wan, Q., et al.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654 (2004)CrossRef
6.
Zurück zum Zitat Banerjee, D., et al.: Synthesis and photoluminescence studies on ZnO nanowires. Nanotechnology 15(3), 404–409 (2004)CrossRef Banerjee, D., et al.: Synthesis and photoluminescence studies on ZnO nanowires. Nanotechnology 15(3), 404–409 (2004)CrossRef
7.
Zurück zum Zitat Nguyen, T., et al.: Near-infrared emission from ZnO nanorods grown by thermal evaporation. J. Lumin. 156, 199–204 (2014)CrossRef Nguyen, T., et al.: Near-infrared emission from ZnO nanorods grown by thermal evaporation. J. Lumin. 156, 199–204 (2014)CrossRef
8.
Zurück zum Zitat Lee, C.J., Lee, T.J., Lyu, S.C., Zhang, Y., Ruh, H., Lee, H.J.: Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81(19), 3648 (2002)CrossRef Lee, C.J., Lee, T.J., Lyu, S.C., Zhang, Y., Ruh, H., Lee, H.J.: Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81(19), 3648 (2002)CrossRef
9.
Zurück zum Zitat Kumar, R., Al-Dossary, O., Kumar, G., Umar, A.: Zinc oxide nanostructures for no2 gas–sensor applications: a review. Nano-Micro Lett. 7(2), 1–24 (2014) Kumar, R., Al-Dossary, O., Kumar, G., Umar, A.: Zinc oxide nanostructures for no2 gas–sensor applications: a review. Nano-Micro Lett. 7(2), 1–24 (2014)
10.
Zurück zum Zitat Wang, C., Yin, L., Zhang, L., Xiang, D., Gao, R.: Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)CrossRef Wang, C., Yin, L., Zhang, L., Xiang, D., Gao, R.: Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)CrossRef
11.
Zurück zum Zitat Choopun, S., Tubtimtae, A., Santhaveesuk, T., Nilphai, S., Wongrat, E., Hongsith, N.: Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells. Appl. Surf. Sci. 256(4), 998–1002 (2009)CrossRef Choopun, S., Tubtimtae, A., Santhaveesuk, T., Nilphai, S., Wongrat, E., Hongsith, N.: Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells. Appl. Surf. Sci. 256(4), 998–1002 (2009)CrossRef
12.
Zurück zum Zitat Liu, H., Kameoka, J., Czaplewski, D.A., Craighead, H.G.: Polymeric nanowire chemical sensor. Nano Lett. 4(4), 671–675 (2004)CrossRef Liu, H., Kameoka, J., Czaplewski, D.A., Craighead, H.G.: Polymeric nanowire chemical sensor. Nano Lett. 4(4), 671–675 (2004)CrossRef
13.
Zurück zum Zitat Hulanicki, A., Glab, S., Ingman, F.: Chemical sensors: definitions and classification. Pure Appl. Chem., 63(9), January 1991 Hulanicki, A., Glab, S., Ingman, F.: Chemical sensors: definitions and classification. Pure Appl. Chem., 63(9), January 1991
14.
Zurück zum Zitat Choi, M.-Y., Park, H.-K., Jin, M.-J., Ho Yoon, D., Kim, S.-W.: Mass production and characterization of free-standing ZnO nanotripods by thermal chemical vapor deposition. J. Cryst. Growth 311(3), 504–507 (2009)CrossRef Choi, M.-Y., Park, H.-K., Jin, M.-J., Ho Yoon, D., Kim, S.-W.: Mass production and characterization of free-standing ZnO nanotripods by thermal chemical vapor deposition. J. Cryst. Growth 311(3), 504–507 (2009)CrossRef
15.
Zurück zum Zitat Kim, J., Sohn, D., Sung, Y., Kim, E.R.: Fabrication and characterization of conductive polypyrrole thin film prepared by in situ vapor-phase polymerization. Synth. Met. 132(3), 309–313 (2003)CrossRef Kim, J., Sohn, D., Sung, Y., Kim, E.R.: Fabrication and characterization of conductive polypyrrole thin film prepared by in situ vapor-phase polymerization. Synth. Met. 132(3), 309–313 (2003)CrossRef
16.
Zurück zum Zitat Tigli, O., Juhala, J.: ZnO nanowire growth by physical vapor deposition. In: 2011 11th IEEE International Conference on Nanotechnology, pp. 608–611 (2011) Tigli, O., Juhala, J.: ZnO nanowire growth by physical vapor deposition. In: 2011 11th IEEE International Conference on Nanotechnology, pp. 608–611 (2011)
17.
Zurück zum Zitat Menzel, A., Subannajui, K., Bakhda, R., Wang, Y., Thomann, R., Zacharias, M.: Tuning the growth mechanism of ZnO nanowires by controlled carrier and reaction gas modulation in thermal CVD. J. Phys. Chem. Lett. 3(19), 2815–2821 (2012)CrossRef Menzel, A., Subannajui, K., Bakhda, R., Wang, Y., Thomann, R., Zacharias, M.: Tuning the growth mechanism of ZnO nanowires by controlled carrier and reaction gas modulation in thermal CVD. J. Phys. Chem. Lett. 3(19), 2815–2821 (2012)CrossRef
18.
Zurück zum Zitat van Deelen, J., Illiberi, A., Kniknie, B., Steijvers, H., Lankhorst, A., Simons, P.: APCVD of ZnO:Al, insight and control by modeling. Surf. Coat. Technol. 230, 239–244 (2013)CrossRef van Deelen, J., Illiberi, A., Kniknie, B., Steijvers, H., Lankhorst, A., Simons, P.: APCVD of ZnO:Al, insight and control by modeling. Surf. Coat. Technol. 230, 239–244 (2013)CrossRef
19.
Zurück zum Zitat Hsu, N.F., Chung, T.K.: A rapid synthesis/growth process producing massive ZnO nanowires for humidity and gas sensing. Appl. Phys. A Mater. Sci. Process. 116(3), 1261–1269 (2014)CrossRef Hsu, N.F., Chung, T.K.: A rapid synthesis/growth process producing massive ZnO nanowires for humidity and gas sensing. Appl. Phys. A Mater. Sci. Process. 116(3), 1261–1269 (2014)CrossRef
20.
Zurück zum Zitat Kundu, S., Sain, S., Satpati, B., Bhattacharyya, S.R., Pradhan, S.K.: Structural interpretation, growth mechanism and optical properties of ZnO nanorods synthesized by a simple wet chemical route. RSC Adv. 5(29), 23101–23113 (2015)CrossRef Kundu, S., Sain, S., Satpati, B., Bhattacharyya, S.R., Pradhan, S.K.: Structural interpretation, growth mechanism and optical properties of ZnO nanorods synthesized by a simple wet chemical route. RSC Adv. 5(29), 23101–23113 (2015)CrossRef
21.
Zurück zum Zitat Han, L., Wang, D., Cui, J., Chen, L., Jiang, T., Lin, Y.: Study on formaldehyde gas-sensing of In2O3-sensitized ZnO nanoflowers under visible light irradiation at room temperature. J. Mater. Chem. 22(25), 12915 (2012)CrossRef Han, L., Wang, D., Cui, J., Chen, L., Jiang, T., Lin, Y.: Study on formaldehyde gas-sensing of In2O3-sensitized ZnO nanoflowers under visible light irradiation at room temperature. J. Mater. Chem. 22(25), 12915 (2012)CrossRef
22.
Zurück zum Zitat Mute, A., Peres, M., Peiris, T.C., Lourenço, A.C., Jensen, L.R., Monteiro, T.: Structural and optical characterization of ZnO nanowires grown on alumina by thermal evaporation method. J. Nanosci. Nanotechnol. 10(4), 2669–2673 (2010)CrossRef Mute, A., Peres, M., Peiris, T.C., Lourenço, A.C., Jensen, L.R., Monteiro, T.: Structural and optical characterization of ZnO nanowires grown on alumina by thermal evaporation method. J. Nanosci. Nanotechnol. 10(4), 2669–2673 (2010)CrossRef
23.
Zurück zum Zitat Bahruji, H., et al.: Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J. Catal, April 2016 Bahruji, H., et al.: Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J. Catal, April 2016
Metadaten
Titel
Comparing the Application of Gas Sensor Fabrication of Nanomaterials ZnO Fabricated by Hydrothermal and Chemical Vapor Deposition Method
verfasst von
Hoang Van Han
Dao Huy Du
Do Anh Tuan
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-64719-3_29

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.