Skip to main content
Erschienen in: Automatic Control and Computer Sciences 7/2019

01.12.2019

Comparison of Doubling the Size of Image Algorithms

verfasst von: S. E. Vaganov, S. I. Khashin

Erschienen in: Automatic Control and Computer Sciences | Ausgabe 7/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper the comparative analysis for quality of some interpolation non-adaptive methods of doubling the image size is carried out. We used the value of a mean square error for estimation accuracy (quality) approximation. Artifacts (aliasing, Gibbs effect (ringing), blurring, etc.) introduced by interpolation methods were not considered. The description of the doubling interpolation upscale algorithms are presented, such as: the nearest neighbor method, linear and cubic interpolation, Lanczos convolution interpolation (with a = 1, 2, 3), and 17-point interpolation method. For each method of upscaling to twice optimal coefficients of kernel convolutions for different down-scale to twice algorithms were found. Various methods for reducing the image size by half were considered the mean value over 4 nearest points and the weighted value of 16 nearest points with optimal coefficients. The optimal weights were calculated for each method of doubling described in this paper. The optimal weights were chosen in such a way as to minimize the value of mean square error between the accurate value and the found approximation. A simple method performing correction for approximation of any algorithm of doubling size is offered. The proposed correction method shows good results for simple interpolation algorithms. However, these improvements are insignificant for complex algorithms (17-point interpolation, Lanczos a = 3). According to the results of numerical experiments, the most accurate among the reviewed algorithms is the 17-point interpolation method, slightly worse is Lanczos convolution interpolation with the parameter a = 3 (see Table 2).
Literatur
1.
Zurück zum Zitat Vatolin, D., et al., Metody szhatiya dannykh. Ustroistvo arkhivatorov, szhatie izobrazhenii i video (Data Compression Methods. The Structure of Archivers, Compression of Images and Videos), Moscow: Dialog–MIFI, 2002. Vatolin, D., et al., Metody szhatiya dannykh. Ustroistvo arkhivatorov, szhatie izobrazhenii i video (Data Compression Methods. The Structure of Archivers, Compression of Images and Videos), Moscow: Dialog–MIFI, 2002.
2.
Zurück zum Zitat Gonzalez, R.C. and Woods, R.E., Digital Image Processing, Prentice Hall, 2002. Gonzalez, R.C. and Woods, R.E., Digital Image Processing, Prentice Hall, 2002.
3.
4.
Zurück zum Zitat Khashin, S.I., 17-point interpolation formula of two variables, Vestn. Ivanov. Gos. Univ., 2003, no. 3, pp. 133–137. Khashin, S.I., 17-point interpolation formula of two variables, Vestn. Ivanov. Gos. Univ., 2003, no. 3, pp. 133–137.
5.
6.
Zurück zum Zitat Burger, W. and Burge, M.J., Principles of Digital Image Processing: Core Algorithms, London: Springer-Verlag, 2009.CrossRef Burger, W. and Burge, M.J., Principles of Digital Image Processing: Core Algorithms, London: Springer-Verlag, 2009.CrossRef
7.
Zurück zum Zitat Taubman, D.S. and Marcellin, M.W., JPEG2000: Image Compression Fundamentals, Standards, and Practice, Springer Science+Business Media, LLC, 2002. Taubman, D.S. and Marcellin, M.W., JPEG2000: Image Compression Fundamentals, Standards, and Practice, Springer Science+Business Media, LLC, 2002.
8.
Zurück zum Zitat Wallace, G.K., The JPEG still picture compression standard, IEEE Trans. Consum. Electron., 1992, vol. 38, no. 1, pp. xviii–xxxiv.CrossRef Wallace, G.K., The JPEG still picture compression standard, IEEE Trans. Consum. Electron., 1992, vol. 38, no. 1, pp. xviii–xxxiv.CrossRef
9.
Zurück zum Zitat Keys, R.G., Cubic convolution interpolation for digital image, Proc. IEEE Trans. Acoust. Speech Signal Process., 1981, vol. 29, no. 6, pp. 1153–1160. Keys, R.G., Cubic convolution interpolation for digital image, Proc. IEEE Trans. Acoust. Speech Signal Process., 1981, vol. 29, no. 6, pp. 1153–1160.
10.
Zurück zum Zitat Klette, R., Concise Computer Vision. An Introduction into Theory and Algorithms, London: Springer-Verlag, 2014.MATH Klette, R., Concise Computer Vision. An Introduction into Theory and Algorithms, London: Springer-Verlag, 2014.MATH
11.
Zurück zum Zitat Xin, Li and Orchard, M.T., New edge-directed interpolation, IEEE Trans. Image Process., 2001, vol. 10, no. 10, pp. 1521–1527.CrossRef Xin, Li and Orchard, M.T., New edge-directed interpolation, IEEE Trans. Image Process., 2001, vol. 10, no. 10, pp. 1521–1527.CrossRef
Metadaten
Titel
Comparison of Doubling the Size of Image Algorithms
verfasst von
S. E. Vaganov
S. I. Khashin
Publikationsdatum
01.12.2019
Verlag
Pleiades Publishing
Erschienen in
Automatic Control and Computer Sciences / Ausgabe 7/2019
Print ISSN: 0146-4116
Elektronische ISSN: 1558-108X
DOI
https://doi.org/10.3103/S0146411619070228

Weitere Artikel der Ausgabe 7/2019

Automatic Control and Computer Sciences 7/2019 Zur Ausgabe

Neuer Inhalt