Skip to main content

2018 | OriginalPaper | Buchkapitel

12. Comparison of Non-conventional Intelligent Algorithms for Optimizing Sculptured Surface CNC Tool Paths

verfasst von : Nikolaos A. Fountas, Nikolaos M. Vaxevanidis, Constantinos I. Stergiou, Redha Benhadj-Djilali

Erschienen in: Introduction to Mechanical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The optimization of process parameters referring to sculptured surface tool path planning increases efficiency and enhances product quality; thus, it is for the major research subject for many noticeable studies. Optimization for process parameters is usually conducted by working with a two-phase scheme; regression modeling based on the results obtained by a design of experiments, and optimization by employing an intelligent algorithm. Currently, new artificial algorithms have been developed and deployed to address different kinds of problems in engineering. In the present work, six new intelligent algorithms have been tested to sculptured surface tool path optimization problems, namely particle swarm optimization (PSO), invasive weed optimization (IWO), shuffled frog-leaping algorithm (SFLA), shuffled complex evolution (SCE), teaching–learning-based optimization (TLBO), and virus-evolutionary genetic algorithm (VGA). Except from the VGA which has been developed from scratch, the rest of the algorithms have been adopted from the literature whilst the case studies the algorithms are applied to have been established using design of machining simulation experiments on benchmark sculptured surfaces. The results obtained from case studies are compared with each other to investigate the capabilities of the aforementioned algorithms in terms of their application to the sculptured surface machining problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Glossar
Chordal deviation
The type of machining error owing to cutting tool interpolation when applying CNC machining as a key metal cutting operation
Computer-aided manufacturing (CAM)
Environment for modeling manufacturing processes with the aid of computers
Design of experiments
The process of establishing experimental runs so as to investigate the influence of independent process parameters to one or more responses (dependent variables)
Empirical models
Mathematical formulas (regression equations) relating independent variables and responses to be used for predicting crucial results prior to actual operations
Genetic algorithms
Artificial intelligence heuristics used for optimizing one or more objectives related to an engineering problem
Metal cutting
The field including the manufacturing processes where raw materials are turned to final products by removing the excess material by machining
Metal forming
The field including the manufacturing processes where raw materials are shaped directly to final products
Objective function
A mathematical relation expressing one or more criteria for optimization either with the use of artificial intelligence (genetic algorithms) or conventional engineering computing
Scallop height
The remaining material a tool path leaves among adjacent tool passes when machining free-form products with CNC technology
Sculptured surface machining
The metal cutting operation for producing free-form surfaces found in modern products, assisted by CNC machining technology
Tool path planning
The process of computing the path to be followed by one or more cutting tools using the CAM environment
Virus-evolutionary genetic algorithm
A special genetic algorithm following the principles of the virus theory of evolution
Literatur
1.
Zurück zum Zitat DeGarmo, E. P., Black, J. T., & Kohser, R. A. (2007). Materials and processes in manufacturing (10th ed.). New York: Wiley. DeGarmo, E. P., Black, J. T., & Kohser, R. A. (2007). Materials and processes in manufacturing (10th ed.). New York: Wiley.
2.
Zurück zum Zitat Kalpakjian, S., & Schmid, S. R. (2001). Manufacturing engineering and technology (4th ed.). New Jersey: Prentice-Hall. Kalpakjian, S., & Schmid, S. R. (2001). Manufacturing engineering and technology (4th ed.). New Jersey: Prentice-Hall.
3.
Zurück zum Zitat Boothroyd, G., & Knight, W. A. (2006). Fundamentals of machining and machine tools (3rd ed.). Boca Raton: CRC. Boothroyd, G., & Knight, W. A. (2006). Fundamentals of machining and machine tools (3rd ed.). Boca Raton: CRC.
4.
Zurück zum Zitat Astakhov, V. P. (2006). Tribology of metal cutting. London: Elsevier. Astakhov, V. P. (2006). Tribology of metal cutting. London: Elsevier.
5.
Zurück zum Zitat Davim, J. P. (2003). Design of optimization of cutting parameters for turning metal matrix composites based on the orthogonal arrays. Journal of Materials Processing Technology, 132(1), 340–344.CrossRef Davim, J. P. (2003). Design of optimization of cutting parameters for turning metal matrix composites based on the orthogonal arrays. Journal of Materials Processing Technology, 132(1), 340–344.CrossRef
6.
Zurück zum Zitat Davim, J. P., & Reis, P. (2005). Damage and dimensional precision of milling carbon fiber-reinforced plastics using design experiments. Journal of Materials Processing Technology, 160(2), 160–167.CrossRef Davim, J. P., & Reis, P. (2005). Damage and dimensional precision of milling carbon fiber-reinforced plastics using design experiments. Journal of Materials Processing Technology, 160(2), 160–167.CrossRef
7.
Zurück zum Zitat Davim, J. P., Reis, P., & Antonio, C. C. (2004). Experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up. Computer Science Technology, 64(2), 289–297.CrossRef Davim, J. P., Reis, P., & Antonio, C. C. (2004). Experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up. Computer Science Technology, 64(2), 289–297.CrossRef
8.
Zurück zum Zitat Choi, B. K., & Jerard, R. B. (1998). Sculptured surface machining: theory and applications. Dordrecht: Kluwer Academic Publishers.CrossRef Choi, B. K., & Jerard, R. B. (1998). Sculptured surface machining: theory and applications. Dordrecht: Kluwer Academic Publishers.CrossRef
9.
Zurück zum Zitat Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249–258.CrossRef Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249–258.CrossRef
10.
Zurück zum Zitat Garg, M. P., Jain, A., & Bhushan, G. (2012). Modelling and multi-objective optimization of process parameters of wire electrical-discharge machining using non-dominated sorting genetic algorithm II. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 226(12), 1986–2001.CrossRef Garg, M. P., Jain, A., & Bhushan, G. (2012). Modelling and multi-objective optimization of process parameters of wire electrical-discharge machining using non-dominated sorting genetic algorithm II. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 226(12), 1986–2001.CrossRef
11.
Zurück zum Zitat Fountas, N. A., Ntziantzias, I., Kechagias, J., Koutsomichalis, A., Davim, J. P., & Vaxevanidis, N. M. (2013). Prediction of cutting forces during turning PA66 GF-30 glass fiber reinforced polyamide by soft computing techniques. Materials Science Forum, 766, 37–58.CrossRef Fountas, N. A., Ntziantzias, I., Kechagias, J., Koutsomichalis, A., Davim, J. P., & Vaxevanidis, N. M. (2013). Prediction of cutting forces during turning PA66 GF-30 glass fiber reinforced polyamide by soft computing techniques. Materials Science Forum, 766, 37–58.CrossRef
12.
Zurück zum Zitat Bhavsar, S. N., Aravindan, S., & Rao, P. V. (2015). Investigating material removal rate and surface roughness using multi-objective optimization for focused ion beam (FIB) micro-milling of cemented carbide. Precision Engineering, 40, 131–138.CrossRef Bhavsar, S. N., Aravindan, S., & Rao, P. V. (2015). Investigating material removal rate and surface roughness using multi-objective optimization for focused ion beam (FIB) micro-milling of cemented carbide. Precision Engineering, 40, 131–138.CrossRef
13.
Zurück zum Zitat Rao, R. V., Rai Dhiraj, P., Balic, J. (2016). Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching–learning-based optimization algorithm. Journal of Intelligent Manufacturing, 1–21. https://doi.org/10.1007/s10845-016-1210-5. Rao, R. V., Rai Dhiraj, P., Balic, J. (2016). Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching–learning-based optimization algorithm. Journal of Intelligent Manufacturing, 1–21. https://​doi.​org/​10.​1007/​s10845-016-1210-5.
14.
Zurück zum Zitat Zain, A. M., Haron, H., & Sharif, S. (2010). Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert System with Applications, 37(6), 4650–4659.CrossRef Zain, A. M., Haron, H., & Sharif, S. (2010). Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert System with Applications, 37(6), 4650–4659.CrossRef
15.
Zurück zum Zitat Sepehri Rad, H., & Lucas, C. (2007). A recommender system based on invasive weed optimization algorithm. IEEE Congress Evolutionary Computer CEC, 2007, 4297–4304. Sepehri Rad, H., & Lucas, C. (2007). A recommender system based on invasive weed optimization algorithm. IEEE Congress Evolutionary Computer CEC, 2007, 4297–4304.
16.
Zurück zum Zitat Duan, Q. Y., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501–521.MathSciNetCrossRef Duan, Q. Y., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501–521.MathSciNetCrossRef
18.
Zurück zum Zitat Gomez-Gonzalez, M., & Jurado, F. (2015). Machining parameters selection for milling operations using shuffled frog-leaping algorithm. International Journal of Emerging Technology and Advanced Engineering, 5(5), 50–59. Gomez-Gonzalez, M., & Jurado, F. (2015). Machining parameters selection for milling operations using shuffled frog-leaping algorithm. International Journal of Emerging Technology and Advanced Engineering, 5(5), 50–59.
19.
Zurück zum Zitat Fountas, N. A., Kechagias, J. D., Vaxevanidis, N. M. (2016). Artificial immune algorithm implementation for optimized multi-axis sculptured surface CNC machining. IOP Conference Series: Material Science Engineering, 161(1).CrossRef Fountas, N. A., Kechagias, J. D., Vaxevanidis, N. M. (2016). Artificial immune algorithm implementation for optimized multi-axis sculptured surface CNC machining. IOP Conference Series: Material Science Engineering, 161(1).CrossRef
20.
Zurück zum Zitat Kubota, N., Fukuda, T., & Shimojima, K. (1996). Virus-evolutionary algorithm for a self-organising manufacturing system. Computer and Industrial Engineering, 30(4), 1015–1026.CrossRef Kubota, N., Fukuda, T., & Shimojima, K. (1996). Virus-evolutionary algorithm for a self-organising manufacturing system. Computer and Industrial Engineering, 30(4), 1015–1026.CrossRef
21.
22.
Zurück zum Zitat Fountas, N. A., Živković, S., Benhadj-Djilali, R., Stergiou, CI., Majstorovic, V. D., Vaxevanidis, N. M. (2017a). Intelligent dual curve-driven tool path optimization and virtual CMM inspection for sculptured surface CNC machining. In V. Majstorovic, & Z. Jakovljevic (Eds.), Proceedings of 5th International Conference on Advanced Manufacturing Engineering and Technologies, NEWTECH 2017, Lecture Notes in Mechanical Engineering, Berlin: Springer. Fountas, N. A., Živković, S., Benhadj-Djilali, R., Stergiou, CI., Majstorovic, V. D., Vaxevanidis, N. M. (2017a). Intelligent dual curve-driven tool path optimization and virtual CMM inspection for sculptured surface CNC machining. In V. Majstorovic, & Z. Jakovljevic (Eds.), Proceedings of 5th International Conference on Advanced Manufacturing Engineering and Technologies, NEWTECH 2017, Lecture Notes in Mechanical Engineering, Berlin: Springer.
23.
Zurück zum Zitat Fountas, N. A., Vaxevanidis, N. M., Stergiou, C. I., & Benhadj-Djilali, R. (2014). Development of a software-automated intelligent sculptured surface machining optimization environment. International Journal of Advanced Manufacturing Technology, 75(5–8), 909–931.CrossRef Fountas, N. A., Vaxevanidis, N. M., Stergiou, C. I., & Benhadj-Djilali, R. (2014). Development of a software-automated intelligent sculptured surface machining optimization environment. International Journal of Advanced Manufacturing Technology, 75(5–8), 909–931.CrossRef
24.
Zurück zum Zitat Gray, P., Bedi, S., & Ismail, F. (2003). Rolling ball method for 5-axis surface machining. Computer Aided Design, 35, 347–356.CrossRef Gray, P., Bedi, S., & Ismail, F. (2003). Rolling ball method for 5-axis surface machining. Computer Aided Design, 35, 347–356.CrossRef
25.
Zurück zum Zitat Gray, P. J., Ismail, F., & Bedi, S. (2004). Graphics-assisted rolling ball method for 5-axis surface machining. Computer Aided Design, 36, 653–663.CrossRef Gray, P. J., Ismail, F., & Bedi, S. (2004). Graphics-assisted rolling ball method for 5-axis surface machining. Computer Aided Design, 36, 653–663.CrossRef
26.
Zurück zum Zitat Roman, A., Barocio, E., huegel, J., & Bedi, S. (2015). Rolling Ball method applied to 3½½-axis machining for tool orientation and positioning and path planning. Advances in Mechanical Engineering, 7(12), 1–12.CrossRef Roman, A., Barocio, E., huegel, J., & Bedi, S. (2015). Rolling Ball method applied to 3½½-axis machining for tool orientation and positioning and path planning. Advances in Mechanical Engineering, 7(12), 1–12.CrossRef
Metadaten
Titel
Comparison of Non-conventional Intelligent Algorithms for Optimizing Sculptured Surface CNC Tool Paths
verfasst von
Nikolaos A. Fountas
Nikolaos M. Vaxevanidis
Constantinos I. Stergiou
Redha Benhadj-Djilali
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-78488-5_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.