Skip to main content
Erschienen in: Journal of Materials Science 17/2017

30.05.2017 | Composites

Comparison of the quantum efficiency and the responsivity of the single-walled carbon nanotube photodetector with different electrode metals

verfasst von: A. Mahmoudi, M. Troudi, P. Bondavalli, N. Sghaier

Erschienen in: Journal of Materials Science | Ausgabe 17/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, experimental measurements of the photoconductivity in single-walled carbon nanotube (SWCNT) thin films were taken using four different electrodes (Pt, Pd, Au and Ti). Our work shows the impact of the light power intensities and wavelengths on the photoresponse signal. In this context, we have performed the electrical transport characteristics of the device at room temperature under visible continuous wavelength illumination. The photoconductivity measurements, achieved without gating, have shown a strong photoresponse enhancement at the nanotubes/electrode junctions. The obtained response has been generally attributed to the dissociation and subsequent diffusion of photoexcited carriers. We have also proven that a good choice of the metal electrode evidently enhances the photoconductivity of SWCNT-thin film. Due to its high work function and its excellent adhesivity on the thin film of SWCNTs, Au electrodes have shown the most important results than the others metals. The highest quantum efficiency (\( \eta \)) calculated in our case is about 12%, and the responsivity reaches 121.48 mA/W for Au–SWCNT contact.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ichida M, Hamanaka Y, Kataura H, Achiba Y, Nakamura A (2004) Ultrafast relaxation dynamics of photoexcited carriers in metallic and semiconducting single-walled carbon nanotubes. J Phys Soc Jpn 73(12):3479–3483CrossRef Ichida M, Hamanaka Y, Kataura H, Achiba Y, Nakamura A (2004) Ultrafast relaxation dynamics of photoexcited carriers in metallic and semiconducting single-walled carbon nanotubes. J Phys Soc Jpn 73(12):3479–3483CrossRef
2.
Zurück zum Zitat Chen H, Xi N, Lai KWC, Fung CKM, Yang R (2010) Development of Infrared detectors using single carbon-nanotube-based field-effect transistors. IEEE Trans Nanotechnol 9(5):582–589CrossRef Chen H, Xi N, Lai KWC, Fung CKM, Yang R (2010) Development of Infrared detectors using single carbon-nanotube-based field-effect transistors. IEEE Trans Nanotechnol 9(5):582–589CrossRef
3.
Zurück zum Zitat Wu Z (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276CrossRef Wu Z (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276CrossRef
4.
Zurück zum Zitat Behnam A et al (2007) Nanolithographic patterning of transparent, conductive single-walled carbon nanotube films by inductively coupled plasma reactive ion etching. J Vac Sci Technol B Microelectron Nanometer Struct 25(2):348CrossRef Behnam A et al (2007) Nanolithographic patterning of transparent, conductive single-walled carbon nanotube films by inductively coupled plasma reactive ion etching. J Vac Sci Technol B Microelectron Nanometer Struct 25(2):348CrossRef
5.
Zurück zum Zitat Behnam A, Noriega L, Choi Y, Wu Z, Rinzler AG, Ural A (2006) Resistivity scaling in single-walled carbon nanotube films patterned to submicron dimensions. Appl Phys Lett 89(9):93107CrossRef Behnam A, Noriega L, Choi Y, Wu Z, Rinzler AG, Ural A (2006) Resistivity scaling in single-walled carbon nanotube films patterned to submicron dimensions. Appl Phys Lett 89(9):93107CrossRef
6.
Zurück zum Zitat Lu S, Panchapakesan B (2006) Nanotube micro-optomechanical actuators. Appl Phys Lett 88(25):253107CrossRef Lu S, Panchapakesan B (2006) Nanotube micro-optomechanical actuators. Appl Phys Lett 88(25):253107CrossRef
7.
Zurück zum Zitat Fujiwara A et al (2001) Photoconductivity in semiconducting single-walled carbon nanotubes. Jpn J Appl Phys 40(11B):L1229–L1231CrossRef Fujiwara A et al (2001) Photoconductivity in semiconducting single-walled carbon nanotubes. Jpn J Appl Phys 40(11B):L1229–L1231CrossRef
8.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2007) Exciton photophysics of carbon nanotubes. Annu Rev Phys Chem 58(1):719–747CrossRef Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2007) Exciton photophysics of carbon nanotubes. Annu Rev Phys Chem 58(1):719–747CrossRef
9.
Zurück zum Zitat He X, Léonard F, Kono J (2015) Uncooled carbon nanotube photodetectors. Adv Opt Mater 3(8):989–1011CrossRef He X, Léonard F, Kono J (2015) Uncooled carbon nanotube photodetectors. Adv Opt Mater 3(8):989–1011CrossRef
10.
Zurück zum Zitat Zhang T-F et al (2016) Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Sci Rep 6:38569CrossRef Zhang T-F et al (2016) Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Sci Rep 6:38569CrossRef
11.
Zurück zum Zitat Léonard F, Tersoff J (2000) Role of fermi-level pinning in nanotube schottky diodes. Phys Rev Lett 84(20):4693–4696CrossRef Léonard F, Tersoff J (2000) Role of fermi-level pinning in nanotube schottky diodes. Phys Rev Lett 84(20):4693–4696CrossRef
12.
Zurück zum Zitat Odintsov AA (2000) Schottky barriers in carbon nanotube heterojunctions. Phys Rev Lett 85(1):150–153CrossRef Odintsov AA (2000) Schottky barriers in carbon nanotube heterojunctions. Phys Rev Lett 85(1):150–153CrossRef
13.
Zurück zum Zitat A. Pavlov, E. Kitsyuk, R. Ryazanov, V. Timoshenkov, and Y. Adamov, “Photodetector based on carbon nanotubes,” 2015, p. 95520 V A. Pavlov, E. Kitsyuk, R. Ryazanov, V. Timoshenkov, and Y. Adamov, “Photodetector based on carbon nanotubes,” 2015, p. 95520 V
14.
Zurück zum Zitat Behnam A et al (2008) Metal-semiconductor-metal photodetectors based on single-walled carbon nanotube film—GaAs schottky contacts. J Appl Phys 103(11):114315CrossRef Behnam A et al (2008) Metal-semiconductor-metal photodetectors based on single-walled carbon nanotube film—GaAs schottky contacts. J Appl Phys 103(11):114315CrossRef
15.
Zurück zum Zitat Behnam A et al (2008) Experimental characterization of single-walled carbon nanotube film-Si Schottky contacts using metal-semiconductor-metal structures. Appl Phys Lett 92(24):243116CrossRef Behnam A et al (2008) Experimental characterization of single-walled carbon nanotube film-Si Schottky contacts using metal-semiconductor-metal structures. Appl Phys Lett 92(24):243116CrossRef
16.
Zurück zum Zitat Palacios JJ, Tarakeshwar P, Kim DM (2008) Metal contacts in carbon nanotube field-effect transistors: beyond the Schottky barrier paradigm. Phys Rev B 77(11):113403CrossRef Palacios JJ, Tarakeshwar P, Kim DM (2008) Metal contacts in carbon nanotube field-effect transistors: beyond the Schottky barrier paradigm. Phys Rev B 77(11):113403CrossRef
17.
Zurück zum Zitat Liu W, Hierold C, Haluska M (2014) Electrical contacts to individual SWCNTs: a review. Beilstein J Nanotechnol 5:2202–2215CrossRef Liu W, Hierold C, Haluska M (2014) Electrical contacts to individual SWCNTs: a review. Beilstein J Nanotechnol 5:2202–2215CrossRef
18.
Zurück zum Zitat Hasan T, Scardaci V, Tan P, Rozhin AG, Milne WI, Ferrari AC (2007) Stabilization and ‘debundling’ of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J Phys Chem C 111(34):12594–12602CrossRef Hasan T, Scardaci V, Tan P, Rozhin AG, Milne WI, Ferrari AC (2007) Stabilization and ‘debundling’ of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J Phys Chem C 111(34):12594–12602CrossRef
19.
Zurück zum Zitat Bondavalli P, Legagneux P, Le BP, Pribat D, Nagle J (2006) Conductive nanotube or nanowire fet transistor network and corresponding electronic device, for detecting analytes. Google Patents, 07 Dec 2006 Bondavalli P, Legagneux P, Le BP, Pribat D, Nagle J (2006) Conductive nanotube or nanowire fet transistor network and corresponding electronic device, for detecting analytes. Google Patents, 07 Dec 2006
20.
Zurück zum Zitat Troudi M, Bergaoui Y, Bondavalli P, Sghaier N (2016) Time domain analysis of traps generated random telegraph signal in (SWCNT) based sensors. Sens Actuators A Phys 252:185–189CrossRef Troudi M, Bergaoui Y, Bondavalli P, Sghaier N (2016) Time domain analysis of traps generated random telegraph signal in (SWCNT) based sensors. Sens Actuators A Phys 252:185–189CrossRef
21.
Zurück zum Zitat Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42(7):2824–2860CrossRef Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42(7):2824–2860CrossRef
22.
Zurück zum Zitat Bondavalli P, Gorintin L, Feugnet G, Lehoucq G, Pribat D (2014) Selective gas detection using CNTFET arrays fabricated using air-brush technique, with different metal as electrodes. Sens Actuators B Chem 202:1290–1297CrossRef Bondavalli P, Gorintin L, Feugnet G, Lehoucq G, Pribat D (2014) Selective gas detection using CNTFET arrays fabricated using air-brush technique, with different metal as electrodes. Sens Actuators B Chem 202:1290–1297CrossRef
24.
Zurück zum Zitat Wei T-Y et al (2010) Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Appl Phys Lett 96(1):13508CrossRef Wei T-Y et al (2010) Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Appl Phys Lett 96(1):13508CrossRef
25.
Zurück zum Zitat Basori R, Das K, Kumar P, Narayan KS, Raychaudhuri AK (2013) Large photoresponse of Cu: 7, 7, 8, 8-tetracyanoquinodimethane nanowire arrays formed as aligned nanobridges. Appl Phys Lett 102(6):61111CrossRef Basori R, Das K, Kumar P, Narayan KS, Raychaudhuri AK (2013) Large photoresponse of Cu: 7, 7, 8, 8-tetracyanoquinodimethane nanowire arrays formed as aligned nanobridges. Appl Phys Lett 102(6):61111CrossRef
26.
Zurück zum Zitat Basori R, Das K, Kumar P, Narayan KS, Raychaudhuri AK (2014) Single CuTCNQ charge transfer complex nanowire as ultra high responsivity photo-detector. Opt Express 22(5):4944–4952CrossRef Basori R, Das K, Kumar P, Narayan KS, Raychaudhuri AK (2014) Single CuTCNQ charge transfer complex nanowire as ultra high responsivity photo-detector. Opt Express 22(5):4944–4952CrossRef
27.
Zurück zum Zitat Zhang H, Zhang X, Liu C, Lee S-T, Jie J (2016) High-responsivity, high-detectivity, ultrafast topological insulator Bi 2 Se 3/silicon heterostructure broadband photodetectors. ACS Nano 10(5):5113–5122CrossRef Zhang H, Zhang X, Liu C, Lee S-T, Jie J (2016) High-responsivity, high-detectivity, ultrafast topological insulator Bi 2 Se 3/silicon heterostructure broadband photodetectors. ACS Nano 10(5):5113–5122CrossRef
28.
Zurück zum Zitat Rose A (1963) Concepts in photoconductivity and allied problems. Interscience Publishers, New York Rose A (1963) Concepts in photoconductivity and allied problems. Interscience Publishers, New York
29.
Zurück zum Zitat Goykhman I et al (2016) On-chip integrated, silicon-graphene plasmonic schottky photodetector with high responsivity and avalanche photogain. Nano Lett 16(5):3005–3013CrossRef Goykhman I et al (2016) On-chip integrated, silicon-graphene plasmonic schottky photodetector with high responsivity and avalanche photogain. Nano Lett 16(5):3005–3013CrossRef
30.
Zurück zum Zitat Zhang Y, Dai H (2000) Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl Phys Lett 77(19):3015–3017CrossRef Zhang Y, Dai H (2000) Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl Phys Lett 77(19):3015–3017CrossRef
31.
Zurück zum Zitat He Y, Zhang J, Wang Y, Yu Z (2010) Coating geometries of metals on single-walled carbon nanotubes. Appl Phys Lett 96(6):63108CrossRef He Y, Zhang J, Wang Y, Yu Z (2010) Coating geometries of metals on single-walled carbon nanotubes. Appl Phys Lett 96(6):63108CrossRef
32.
Zurück zum Zitat Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657CrossRef Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657CrossRef
33.
Zurück zum Zitat Lim SC et al (2009) Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Appl Phys Lett 95(26):264103CrossRef Lim SC et al (2009) Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Appl Phys Lett 95(26):264103CrossRef
34.
Zurück zum Zitat Maiti A, Ricca A (2004) Metal-nanotube interactions—binding energies and wetting properties. Chem Phys Lett 395(1–3):7–11CrossRef Maiti A, Ricca A (2004) Metal-nanotube interactions—binding energies and wetting properties. Chem Phys Lett 395(1–3):7–11CrossRef
35.
Zurück zum Zitat Manohara HM, Wong EW, Schlecht E, Hunt BD, Siegel PH (2005) Carbon nanotube Schottky diodes using Ti–Schottky and Pt–ohmic contacts for high frequency applications. Nano Lett 5(7):1469–1474CrossRef Manohara HM, Wong EW, Schlecht E, Hunt BD, Siegel PH (2005) Carbon nanotube Schottky diodes using Ti–Schottky and Pt–ohmic contacts for high frequency applications. Nano Lett 5(7):1469–1474CrossRef
36.
Zurück zum Zitat Zeng Q et al (2012) Carbon nanotube arrays based high-performance infrared photodetector. Opt Mater Express 2(6):839CrossRef Zeng Q et al (2012) Carbon nanotube arrays based high-performance infrared photodetector. Opt Mater Express 2(6):839CrossRef
37.
Zurück zum Zitat Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87(7):73101CrossRef Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87(7):73101CrossRef
38.
Zurück zum Zitat Xie Y, Gong M, Shastry TA, Lohrman J, Hersam MC, Ren S (2013) Broad-spectral-response nanocarbon bulk-heterojunction excitonic photodetectors. Adv Mater 25(25):3433–3437CrossRef Xie Y, Gong M, Shastry TA, Lohrman J, Hersam MC, Ren S (2013) Broad-spectral-response nanocarbon bulk-heterojunction excitonic photodetectors. Adv Mater 25(25):3433–3437CrossRef
39.
Zurück zum Zitat Lu R, Christianson C, Weintrub B, Wu JZ (2013) High photoresponse in hybrid graphene–carbon nanotube infrared detectors. ACS Appl Mater Interfaces 5(22):11703–11707CrossRef Lu R, Christianson C, Weintrub B, Wu JZ (2013) High photoresponse in hybrid graphene–carbon nanotube infrared detectors. ACS Appl Mater Interfaces 5(22):11703–11707CrossRef
Metadaten
Titel
Comparison of the quantum efficiency and the responsivity of the single-walled carbon nanotube photodetector with different electrode metals
verfasst von
A. Mahmoudi
M. Troudi
P. Bondavalli
N. Sghaier
Publikationsdatum
30.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1239-7

Weitere Artikel der Ausgabe 17/2017

Journal of Materials Science 17/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.