Skip to main content
Erschienen in:

21.02.2024 | Chassis, Electrical and Electronics, Vehicle Dynamics and Control

Comparison of Various Angle-Tracking Algorithms to Balance Performance and Noise for a Steering-by-Wire System

verfasst von: He Liu, Yahui Liu, Jingyuan Li, Xuewu Ji

Erschienen in: International Journal of Automotive Technology | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper compares various angle-tracking algorithms to balance the performance and noise for a steering-by-wire (SBW) system. Direct and quiet steering experiences can improve drivers’ acceptance of the SBW system. Linear quadratic regulator (LQR) control, robust control, and conventional cascade proportional–integral (PI) control have been developed and compared both theoretically and experimentally. To avoid the risky and time-consuming parameter-tuning process, a high-fidelity steering resistance model, which comprises a linear two-degree-of-freedom vehicle model and a dynamic LuGre friction model is established. Step and sine wave tests are simulated in a Matlab/Simulink environment to determine the reasonable parameter region for various methods. Then, the three types of algorithms are implemented on a prototype SBW vehicle and compared under the same scenarios. Finally, the simulated and experimental results are illustrated in detail. According to the indicators of control bandwidths, steady-state errors, cockpit sounds, and current waveforms, it is clear that LQR and robust control can achieve faster response and more acceptable noise, with uncertain and relatively larger tracking errors. Cascade PI control, in comparison, can realize smaller steady-state errors and gentler current waveforms, with slight noise and slower response.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Balachandran, A., & Gerdes, J. C. (2015). Designing steering feel for steer-by-wire vehicles using objective measures. IEEE/ASNE Transactions on Mechatronics, 20(1), 373–383.CrossRef Balachandran, A., & Gerdes, J. C. (2015). Designing steering feel for steer-by-wire vehicles using objective measures. IEEE/ASNE Transactions on Mechatronics, 20(1), 373–383.CrossRef
Zurück zum Zitat Dumlu, A., & Erenturk, K. (2014). Trajectory tracking control for a 3-DOF parallel manipulator using fractional-order PIλDμ control. IEEE Transactions on Industrial Electronics, 61(7), 3417–3426.CrossRef Dumlu, A., & Erenturk, K. (2014). Trajectory tracking control for a 3-DOF parallel manipulator using fractional-order PIλDμ control. IEEE Transactions on Industrial Electronics, 61(7), 3417–3426.CrossRef
Zurück zum Zitat He, L., Li, F., Guo, C., Gao, B., Lu, J., & Shi, Q. (2022). An adaptive PI controller by particle swarm optimization for angle tracking of steer-by-wire. IEEE/ASNE Transactions on Mechatronics, 27(5), 3830–3840.CrossRef He, L., Li, F., Guo, C., Gao, B., Lu, J., & Shi, Q. (2022). An adaptive PI controller by particle swarm optimization for angle tracking of steer-by-wire. IEEE/ASNE Transactions on Mechatronics, 27(5), 3830–3840.CrossRef
Zurück zum Zitat Huang, C., Li, L., & Wang, X. (2020a). Comparative study of two types of control loops aiming at trajectory tracking of a steer-by-wire system with Coulomb friction. Proceedings of the Institution of Mechanical Engineers, Part D: J Automobile Engineering, 235(1), 16–31. Huang, C., Li, L., & Wang, X. (2020a). Comparative study of two types of control loops aiming at trajectory tracking of a steer-by-wire system with Coulomb friction. Proceedings of the Institution of Mechanical Engineers, Part D: J Automobile Engineering, 235(1), 16–31.
Zurück zum Zitat Huang, C., Naghdy, F., & Du, H. (2020b). Delta operator-based model predictive control with fault Compensation for steer-by-wire systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(6), 2257–2272.CrossRef Huang, C., Naghdy, F., & Du, H. (2020b). Delta operator-based model predictive control with fault Compensation for steer-by-wire systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(6), 2257–2272.CrossRef
Zurück zum Zitat Hwang, H., & Nam, K. (2019). Design of a robust rack position controller based on 1-dimensional amesim model of a steer-by-wire system. International Journal of Automotive Technology, 21(2), 419–425.CrossRef Hwang, H., & Nam, K. (2019). Design of a robust rack position controller based on 1-dimensional amesim model of a steer-by-wire system. International Journal of Automotive Technology, 21(2), 419–425.CrossRef
Zurück zum Zitat Kim, H. W., & Sul, S. K. (1996). A new motor speed estimator using Kalman Filter in low-speed range. IEEE Transactions on Industrial Electronics, 43(4), 498–504.CrossRef Kim, H. W., & Sul, S. K. (1996). A new motor speed estimator using Kalman Filter in low-speed range. IEEE Transactions on Industrial Electronics, 43(4), 498–504.CrossRef
Zurück zum Zitat Lewis, F. L., Vrabie, D., & Syrmos, V. L. (2012). Optimal Control (3rd ed.). Wiley.CrossRef Lewis, F. L., Vrabie, D., & Syrmos, V. L. (2012). Optimal Control (3rd ed.). Wiley.CrossRef
Zurück zum Zitat Panagiotis, T., Efstathios, V., & Michel, S. (2004). A LuGre tire friction model with exact aggregate dynamics. Vehicle System Dynamics, 42(3), 195–210.CrossRef Panagiotis, T., Efstathios, V., & Michel, S. (2004). A LuGre tire friction model with exact aggregate dynamics. Vehicle System Dynamics, 42(3), 195–210.CrossRef
Zurück zum Zitat Philippe, F. (2013). Loop-Shaping Robust Control (3rd ed.). John Wiley & Sons. Philippe, F. (2013). Loop-Shaping Robust Control (3rd ed.). John Wiley & Sons.
Zurück zum Zitat Utkin, V. (2016). Discussion aspects of high-order sliding mode control. IEEE Transactions on Automatic Control, 61(3), 1596–1611.MathSciNetCrossRef Utkin, V. (2016). Discussion aspects of high-order sliding mode control. IEEE Transactions on Automatic Control, 61(3), 1596–1611.MathSciNetCrossRef
Zurück zum Zitat Wang, H., Kong, H., Man, Z., Tuan, D. M., Cao, Z., & Shen, W. (2014). Sliding mode control for steer-by-wire systems with ac motors in road vehicles. IEEE Transactions on Industrial Electronics, 61(3), 829–833.CrossRef Wang, H., Kong, H., Man, Z., Tuan, D. M., Cao, Z., & Shen, W. (2014). Sliding mode control for steer-by-wire systems with ac motors in road vehicles. IEEE Transactions on Industrial Electronics, 61(3), 829–833.CrossRef
Zurück zum Zitat Wang, Y., Liu, Y., & Wang, Y. (2023). Adaptive discrete-time NN controller design for automobile steer-by-wire systems with angular velocity observer. Proceedings of the Institution of Mechanical Engineers, Part D: J Automobile Engineering, 237(4), 722–736. Wang, Y., Liu, Y., & Wang, Y. (2023). Adaptive discrete-time NN controller design for automobile steer-by-wire systems with angular velocity observer. Proceedings of the Institution of Mechanical Engineers, Part D: J Automobile Engineering, 237(4), 722–736.
Zurück zum Zitat Wu, X., Zhang, M., & Xu, M. (2019). Active tracking control for steer-by-wire system with disturbance observer. IEEE Transactions on Vehicular Technology, 68(6), 5483–5493.CrossRef Wu, X., Zhang, M., & Xu, M. (2019). Active tracking control for steer-by-wire system with disturbance observer. IEEE Transactions on Vehicular Technology, 68(6), 5483–5493.CrossRef
Zurück zum Zitat Wu, X., Zhang, M., Xu, M., & Kakogawa, Y. (2018). Adaptive feedforward control of a steer-by-wire system by online parameter estimator. International Journal of Automotive Technology, 19(1), 159–166.CrossRef Wu, X., Zhang, M., Xu, M., & Kakogawa, Y. (2018). Adaptive feedforward control of a steer-by-wire system by online parameter estimator. International Journal of Automotive Technology, 19(1), 159–166.CrossRef
Metadaten
Titel
Comparison of Various Angle-Tracking Algorithms to Balance Performance and Noise for a Steering-by-Wire System
verfasst von
He Liu
Yahui Liu
Jingyuan Li
Xuewu Ji
Publikationsdatum
21.02.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology / Ausgabe 3/2024
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00038-2

Weitere Artikel der Ausgabe 3/2024

Smart Control of DCT Proportional Solenoid Valve Based on Data Mining

  • Vehicle Dynamics and Control, Other Fields of Automotive Engineering

Combined Steering and Braking Collision Avoidance Control Method Based on Model Predictive Control

  • Connected Automated Vehicles and ITS, Electric, Fuel Cell, and Hybrid Vehicle, Vehicle Dynamics and Control

Study on Modeling and Control for a Novel Active Suspension

  • Vehicle Dynamics and Control, Other Fields of Automotive Engineering

Misfire Detection Index Distinguishing the Difference of the Engine Angular Acceleration Between Two Specified Teeth of the Sensor Wheel

  • Electric, Fuel Cell, and Hybrid Vehicle, Engine and Emissions, Fuels and Lubricants, Heat Transfer, Fluid and Thermal Engineering

Human–Machine Cooperative Steering Control Based on Non-cooperative Nash Game

  • Chassis, Electrical and Electronics, Vehicle Dynamics and Control