Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.11.2016 | Ausgabe 1/2017

Designs, Codes and Cryptography 1/2017

Complete mappings and Carlitz rank

Zeitschrift:
Designs, Codes and Cryptography > Ausgabe 1/2017
Autoren:
Leyla Işık, Alev Topuzoğlu, Arne Winterhof
Wichtige Hinweise
Communicated by C. Mitchell.

Abstract

The well-known Chowla and Zassenhaus conjecture, proven by Cohen in 1990, states that for any \(d\ge 2\) and any prime \(p>(d^2-3d+4)^2\) there is no complete mapping polynomial in \(\mathbb {F}_p[x]\) of degree d. For arbitrary finite fields \(\mathbb {F}_q\), we give a similar result in terms of the Carlitz rank of a permutation polynomial rather than its degree. We prove that if \(n<\lfloor q/2\rfloor \), then there is no complete mapping in \(\mathbb {F}_q[x]\) of Carlitz rank n of small linearity. We also determine how far permutation polynomials f of Carlitz rank \(n<\lfloor q/2\rfloor \) are from being complete, by studying value sets of \(f+x.\) We provide examples of complete mappings if \(n=\lfloor q/2\rfloor \), which shows that the above bound cannot be improved in general.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

Designs, Codes and Cryptography 1/2017 Zur Ausgabe

Premium Partner

    Bildnachweise