Skip to main content

2014 | OriginalPaper | Buchkapitel

Complex Fluids, Soft Matter and the Jamming Transition Problem

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present an introductory view of the jamming transition problem, starting from Soft Matter, passing through Granular Matter and ending up with Jamming. Various properties of Soft Matter are discussed, because almost all the systems included in this category can be jammed. Then, we discuss fundamental and intrinsic aspects of Soft Matter systems. Although they look like a hodgepodge of things, they share some common features. Here, we propose that Granular Matter could provide a framework to understand essential aspects of Soft Matter. Granular materials can mimic glassy, liquid, solid, and gas-like behaviours and one can use them to understand the other members of Soft Matter. Finally, we present an overview of the jamming transition problem and outline a program towards a unified theory of Soft Matter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
fr. Matière Molle.
 
2
When experiments are performed on thermodynamic systems, the quantities which are easiest to measure are the response functions. Generally, we change one parameter in the system and see how other parameters respond to that change under highly controlled conditions. They also provide a measure of the size fluctuations in a thermodynamic system (Reichl 1998). Response functions are the usual method for characterizing the macroscopic behaviour of a system. They are experimentally measured from changes in thermodynamic coordinates with external probes.
 
3
Supramolecular structures are large molecules formed by bonding smaller molecules together.
 
4
They are the third component of the cytoskeleton and are rigid hollow rods approximately 25 nm in diameter. They are dynamic structures that undergo continual assembly and disassembly within the cell, and are composed of a single type of globular protein, called tubulin.
 
5
Viscoelasticity is referred to as the phenomenon in which the stress and strain of some materials depends on time. Viscoelasticity is the combination of viscous and elastic response of a material subjected to constant strain, constant stress, or oscillatory stress and strain. Let recall that elasticity deals with the mechanical properties of elastic solids, which obey Hooke’s law: stress (\(\sigma \)) is proportional to strain (\(\gamma \)), i.e., \(\sigma = G \gamma \), where \(G\) is the shear modulus which is independent of the applied strain at low values. On the other hand, viscosity deals with the properties of liquids in the classical theory of hydrodynamics according to Newton’s law: \(\sigma = \eta \dot{\gamma }\), where \(\eta \) is the viscosity which is independent of the applied shear rate at low values. Whether a material behaves as an elastic solid or a viscous liquid depends on the length time over which an experiment will be done. Shear modulus is defined as the ratio of shear stress to the shear strain, and it is useful for measuring the stiffness of materials.
 
6
We have introduced features for granular matter trying to make a broad classification of all of them.
 
7
Amphiphilic molecules possess both hydrophilic (polar) and lipophilic (fat loving) parts. They are related to molecules having a polar, water-soluble group attached to a nonpolar, water-insoluble hydrocarbon chain.
 
8
What does a self-assembly mean? It is a type of process in which a disordered system of pre-existing components forms an organized structure of patterns as a consequence of specific, local interactions among the components themselves, without external direction.
 
9
A micelle is an aggregate of surfactant molecules dispersed in a liquid colloid. A surfactant is a substance which exhibits some superficial o interfacial activity.
 
10
In the smectic-A mesophase, the director is perpendicular to the smectic plane and there is no particular positional order in the layer. Similarly, the smectic-B mesophase is faced with the director perpendicular to the smectic plane, but the molecules are arranged into a network of hexagons within the layer. In the smectic-C mesophase, molecules are arranged as in the smectic-A mesophase, but the director is at a constant tilt angle measured normally to the smectic plane.
 
11
They should have considered the work done by Ciamarra et al. (2010), where they made certain modifications to the Liu-Nagel’s phase diagram taking into account the role of infinite relaxation times and the convex shape of the jamming region.
 
12
An important feature of granular materials is that the internal forces are not carried uniformly by the material, but instead through long chain-like structures whose density and orientation depend on the state and history of the sample. This feature allows us to study some problems of information propagation in GM using percolation theory.
 
13
Following H. A. Barnes (1999), yield stress is defined for liquids and solids. In the first case, yield stress is a point at which, when decreasing the applied stress, solid-like behaviour is first seen, i.e., no continual deformation. In the latter case, it is essentially the point at which, when increasing the applied stress, the solid first shows liquid-like behaviour, i.e. continual deformation.
 
14
For some super-cooled liquids, the temperature dependence on relaxation times or on transport properties, such as the diffusion constant, is stronger than predicted by Arrhenius law. Arrhenius law refers to the fact that in some viscous liquids \(\log \eta \) (\(\eta \) is the viscosity) is linear in \(T^{-1}\) (\(T\) is the temperature).
 
15
Critical phenomena are phenomena observed near a critical point and this is precisely a point in the phase diagram where a continuous phase transition takes place.
 
16
\(\xi =\xi _0 e^{\frac{A}{T-T_0}}\).
 
17
Owing to the co-existence of quantities that vary continuously at the transition, such as the pressure and the shear modulus, and of quantities that change discontinuously, such as the mean contact number per particle (van Hecke 2010).
 
18
\(V(r_{i,\,j})=\dfrac{A}{r_{i,\,j}^{36}}+B\dfrac{e^{-k r_{i,\,j} }}{r_{i,\,j}}-\dfrac{C}{r_{i,\,j}^{6}}\).
 
Literatur
Zurück zum Zitat Araki T, Tanaka H (2006) Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line. Phys Rev Lett 97:127801.1–127801.4CrossRef Araki T, Tanaka H (2006) Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line. Phys Rev Lett 97:127801.1–127801.4CrossRef
Zurück zum Zitat Aranson IS, Tsimring LS (2009) Granular patterns. Oxford University Press, Oxford Aranson IS, Tsimring LS (2009) Granular patterns. Oxford University Press, Oxford
Zurück zum Zitat Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: theoretical concepts. Rev Mod Phys 76:641–692CrossRef Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: theoretical concepts. Rev Mod Phys 76:641–692CrossRef
Zurück zum Zitat Bak P (1997) How nature works; the science of self-organized critically. Oxford University Press, Oxford Bak P (1997) How nature works; the science of self-organized critically. Oxford University Press, Oxford
Zurück zum Zitat Ball RC, Melrose JR (1995) Lubrication breakdown in hydrodynamic simulations of concentrated colloids. Adv Colloid Interface 59:19–30CrossRef Ball RC, Melrose JR (1995) Lubrication breakdown in hydrodynamic simulations of concentrated colloids. Adv Colloid Interface 59:19–30CrossRef
Zurück zum Zitat Ballesta P, Duri A, Cipelletti L (2008) Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition. Nature 4:550–554 Ballesta P, Duri A, Cipelletti L (2008) Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition. Nature 4:550–554
Zurück zum Zitat Barnes HA (1999) The yield stress - a review or \(\pi \alpha \nu \tau \alpha \) \(\rho \varepsilon \iota \) - everything flows? J Non-Newtonian Fluid Mech 81:133–178CrossRef Barnes HA (1999) The yield stress - a review or \(\pi \alpha \nu \tau \alpha \) \(\rho \varepsilon \iota \) - everything flows? J Non-Newtonian Fluid Mech 81:133–178CrossRef
Zurück zum Zitat Berghmans M, This S, Cornette M, Bergbans H, De Schryver FC, Moldenaers P, Mewis J (1994) Thermoreversible gelation of solutions of syndiotactic poly(methy1 methacrylate) in toluene: a two-step mechanism. Macromolecules 27:7669CrossRef Berghmans M, This S, Cornette M, Bergbans H, De Schryver FC, Moldenaers P, Mewis J (1994) Thermoreversible gelation of solutions of syndiotactic poly(methy1 methacrylate) in toluene: a two-step mechanism. Macromolecules 27:7669CrossRef
Zurück zum Zitat Bernal JD (1960) Geometry and the structure of monatomic liquids. Nature 185:6870CrossRef Bernal JD (1960) Geometry and the structure of monatomic liquids. Nature 185:6870CrossRef
Zurück zum Zitat Berthier L, Biroli G (2011) Theoretical perspective on the glass transition and amorphous materials. Rev Mod Phys 83:587–645CrossRef Berthier L, Biroli G (2011) Theoretical perspective on the glass transition and amorphous materials. Rev Mod Phys 83:587–645CrossRef
Zurück zum Zitat Berthier L, Jacquin H, Zamponi F (2011) Can the jamming transition be described using equilibrium statistical mechanics? J Stat Mech P01004 Berthier L, Jacquin H, Zamponi F (2011) Can the jamming transition be described using equilibrium statistical mechanics? J Stat Mech P01004
Zurück zum Zitat Bi D, Zhang J, Chakraborty B, Behringer RP (2011) Jamming by shear. Nature 480:355–358CrossRef Bi D, Zhang J, Chakraborty B, Behringer RP (2011) Jamming by shear. Nature 480:355–358CrossRef
Zurück zum Zitat Biroli G (2009) Glass and Jamming Transition. Séminaire Poincaré XIII, 37 67. Biroli G (2009) Glass and Jamming Transition. Séminaire Poincaré XIII, 37 67.
Zurück zum Zitat Biroli G (2007) Jamming: a new kind of phase transition? Nature 3:222–223 Biroli G (2007) Jamming: a new kind of phase transition? Nature 3:222–223
Zurück zum Zitat Brockwell DJ, Paci E, Zinober RC, Beddard GS, Olmsted PD, Smith DA, Perham RN, Radford SE (2003) Pulling geometry defines the mechanical resistence of a beta-sheet protein. Nat Struct Biol 10:731–737CrossRef Brockwell DJ, Paci E, Zinober RC, Beddard GS, Olmsted PD, Smith DA, Perham RN, Radford SE (2003) Pulling geometry defines the mechanical resistence of a beta-sheet protein. Nat Struct Biol 10:731–737CrossRef
Zurück zum Zitat Campbell CS (1990) Rapid granular flows. Annu Rev Fluid Mech 22:57–92CrossRef Campbell CS (1990) Rapid granular flows. Annu Rev Fluid Mech 22:57–92CrossRef
Zurück zum Zitat Cang H, Li J, Novikov VN, Fayer MD (2003) Dynamical signature of two ideal glass transition in nematic liquid crystals. J Chem Phys 119:10421–10427CrossRef Cang H, Li J, Novikov VN, Fayer MD (2003) Dynamical signature of two ideal glass transition in nematic liquid crystals. J Chem Phys 119:10421–10427CrossRef
Zurück zum Zitat Cates ME, Wittmer JP, Bouchaud JP, Claudin P (1998) Jamming, force chains, and fragile matter. Phys Rev Lett 81:1841–1844CrossRef Cates ME, Wittmer JP, Bouchaud JP, Claudin P (1998) Jamming, force chains, and fragile matter. Phys Rev Lett 81:1841–1844CrossRef
Zurück zum Zitat Chumakov AI, Moncaco G, Crichton WA, Bosak A, Rüffer R, Meyer A, Kargl F, Comez L, Fioretto D, Giefers H, Roitsch S, Wortmann G, Manghnani MH, Hushur A, Williams Q, Balogh J, Parlinski K, Jochym P, Piekarz P (2011) Equivalence of the boson peak in glasses to the transverse acoustic van hove singularity in crystals. Phys Rev Lett 106:225501CrossRef Chumakov AI, Moncaco G, Crichton WA, Bosak A, Rüffer R, Meyer A, Kargl F, Comez L, Fioretto D, Giefers H, Roitsch S, Wortmann G, Manghnani MH, Hushur A, Williams Q, Balogh J, Parlinski K, Jochym P, Piekarz P (2011) Equivalence of the boson peak in glasses to the transverse acoustic van hove singularity in crystals. Phys Rev Lett 106:225501CrossRef
Zurück zum Zitat Ciamarra MP, Sollich P (2012) High-order jamming crossovers and density anomalies. arXiv:1209.3334 Ciamarra MP, Sollich P (2012) High-order jamming crossovers and density anomalies. arXiv:1209.3334
Zurück zum Zitat Ciamarra MP, Sollich P (2013) The first jamming crossover: geometric and mechanical features. J Chem Phys 138: 12A529. Ciamarra MP, Sollich P (2013) The first jamming crossover: geometric and mechanical features. J Chem Phys 138: 12A529.
Zurück zum Zitat Ciamarra MP, Nicodemi N, Coniglio A (2010) Recent results on the jamming phase diagram. Soft Matter 6:2871–2874CrossRef Ciamarra MP, Nicodemi N, Coniglio A (2010) Recent results on the jamming phase diagram. Soft Matter 6:2871–2874CrossRef
Zurück zum Zitat Corwin EI, Jaeger HM, Nagel SR (2005) Structural signature of jamming in granular media. Nature 435:1075–1078CrossRef Corwin EI, Jaeger HM, Nagel SR (2005) Structural signature of jamming in granular media. Nature 435:1075–1078CrossRef
Zurück zum Zitat Dagois-Bohy S, Tighe BP, Simon J, Henkes S, van Hecke M (2012) Soft-sphere packings at finite pressure but unstable to shear. Phys Rev Lett 109:095703CrossRef Dagois-Bohy S, Tighe BP, Simon J, Henkes S, van Hecke M (2012) Soft-sphere packings at finite pressure but unstable to shear. Phys Rev Lett 109:095703CrossRef
Zurück zum Zitat D’Anna G, Gremaud G (2001) The jamming route to the glass state in weakly perturbed granular media. Nature 413:407–409CrossRef D’Anna G, Gremaud G (2001) The jamming route to the glass state in weakly perturbed granular media. Nature 413:407–409CrossRef
Zurück zum Zitat D’Anna G, Mayor P, Barrat A, Loreto V, Nori F (2003) Observing brownian motion in vibration-fluidized granular matter. Nature 424:909–912CrossRef D’Anna G, Mayor P, Barrat A, Loreto V, Nori F (2003) Observing brownian motion in vibration-fluidized granular matter. Nature 424:909–912CrossRef
Zurück zum Zitat Dawson K, Foffi G, McCullagh GD, Scortino F, Tartaglia P, Zaccarelli E (2002) Ideal glass in attractive systems with different potentials. J Phys Condens Matter 14: 2223 Dawson K, Foffi G, McCullagh GD, Scortino F, Tartaglia P, Zaccarelli E (2002) Ideal glass in attractive systems with different potentials. J Phys Condens Matter 14: 2223
Zurück zum Zitat Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267 Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267
Zurück zum Zitat Denkov ND, Tcholakova S, Golemanov K, Lips A (2009) Jamming in sheared foams and emulsions, explained by critical instability of the films between neighboring bubbles and drops. Phys Rev Lett 103:118302CrossRef Denkov ND, Tcholakova S, Golemanov K, Lips A (2009) Jamming in sheared foams and emulsions, explained by critical instability of the films between neighboring bubbles and drops. Phys Rev Lett 103:118302CrossRef
Zurück zum Zitat Doliwa B, Heuer A (1998) Cage Effect, Local anisotropies, and dynamic heterogeneities at the glass transition: a computer study of hard spheres. Phys Rev Lett 80:4915–4918CrossRef Doliwa B, Heuer A (1998) Cage Effect, Local anisotropies, and dynamic heterogeneities at the glass transition: a computer study of hard spheres. Phys Rev Lett 80:4915–4918CrossRef
Zurück zum Zitat Durian DJ, Weitz DA (1994) Foams. In: Kirk-Othmer, Kroschwitz JL (eds) Encyclopedia of chemical technology. Wiley, New York Durian DJ, Weitz DA (1994) Foams. In: Kirk-Othmer, Kroschwitz JL (eds) Encyclopedia of chemical technology. Wiley, New York
Zurück zum Zitat Ediger MD, Angell AC, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100:13200–13212CrossRef Ediger MD, Angell AC, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100:13200–13212CrossRef
Zurück zum Zitat Ediger MD (2000) Spatially heterogeneous dynamics in supercooled liquids. Annu Rev Phys Chem 51:99–128CrossRef Ediger MD (2000) Spatially heterogeneous dynamics in supercooled liquids. Annu Rev Phys Chem 51:99–128CrossRef
Zurück zum Zitat Edwards SF (1964) The statistical mechanics of polymers with excluded volume. Proc Phys Soc 85:613–624CrossRef Edwards SF (1964) The statistical mechanics of polymers with excluded volume. Proc Phys Soc 85:613–624CrossRef
Zurück zum Zitat Ellenbroek WG (2007) Response of granular media near the jamming transition. Ph.D. Thesis (Delft-Leiden, Casimir PhD Series) Ellenbroek WG (2007) Response of granular media near the jamming transition. Ph.D. Thesis (Delft-Leiden, Casimir PhD Series)
Zurück zum Zitat Ellenbroek WG, van Hecke M, van Saarloos W (2009) Jammed frictionless disks: connecting local and global response. Phys Rev Lett E 80:061307CrossRef Ellenbroek WG, van Hecke M, van Saarloos W (2009) Jammed frictionless disks: connecting local and global response. Phys Rev Lett E 80:061307CrossRef
Zurück zum Zitat Farr RS, Melrose JK, Ball RC (1997) Kinetic theory of jamming in hard-sphere startup flows. Phys Rev E 55:7203–7211CrossRef Farr RS, Melrose JK, Ball RC (1997) Kinetic theory of jamming in hard-sphere startup flows. Phys Rev E 55:7203–7211CrossRef
Zurück zum Zitat de Gennes PG (1999) Granular matter: a tentative view. Rev Mod Phys 71:S374–S382CrossRef de Gennes PG (1999) Granular matter: a tentative view. Rev Mod Phys 71:S374–S382CrossRef
Zurück zum Zitat Goodrich CP, Liu AJ, Nagel SR (2012) Finite-size scaling at the jamming transition. Phys Rev Lett 109:095704CrossRef Goodrich CP, Liu AJ, Nagel SR (2012) Finite-size scaling at the jamming transition. Phys Rev Lett 109:095704CrossRef
Zurück zum Zitat Guenet JM (1999) Physical gels from PVC: molecular structure of pregels and gels to chain microstructure. In: Morishima Y, Norisuye T, Tashiro K (eds) Molecular interactions and time-space organization in macromolecular systems. Springer, Berlin Guenet JM (1999) Physical gels from PVC: molecular structure of pregels and gels to chain microstructure. In: Morishima Y, Norisuye T, Tashiro K (eds) Molecular interactions and time-space organization in macromolecular systems. Springer, Berlin
Zurück zum Zitat Haff PK (1985) Physical picture of kinetic granular fluids. J Rheology 30:931–948CrossRef Haff PK (1985) Physical picture of kinetic granular fluids. J Rheology 30:931–948CrossRef
Zurück zum Zitat Hamley IW (2007) Soft matter: synthetic and biological self-assembling materials. Wiley, West Sussex Hamley IW (2007) Soft matter: synthetic and biological self-assembling materials. Wiley, West Sussex
Zurück zum Zitat Ippolito I, Annie C, Lemaitre J, Oger L, Bideau D (1995) Granular temperature: experimental analysis. Phys Rev E 52:2072–2075CrossRef Ippolito I, Annie C, Lemaitre J, Oger L, Bideau D (1995) Granular temperature: experimental analysis. Phys Rev E 52:2072–2075CrossRef
Zurück zum Zitat Jacob X, Aleshin V, Tournat V, Leclaire P, Lauriks W, Gusev VE (2008) Acoustic probing of the jamming transition in a unconsolidated granular material. Phys Rev Lett 100:158003CrossRef Jacob X, Aleshin V, Tournat V, Leclaire P, Lauriks W, Gusev VE (2008) Acoustic probing of the jamming transition in a unconsolidated granular material. Phys Rev Lett 100:158003CrossRef
Zurück zum Zitat Jacquin H, Berthier L, Zamponi F (2011) Microscopic mean-field theory of the jamming transition. Phys Rev Lett 106:135702CrossRef Jacquin H, Berthier L, Zamponi F (2011) Microscopic mean-field theory of the jamming transition. Phys Rev Lett 106:135702CrossRef
Zurück zum Zitat Jaeger HM, Nagel SR (1996) Granular solids, liquids and gases. Rev Mod Phys 68:1259–1273CrossRef Jaeger HM, Nagel SR (1996) Granular solids, liquids and gases. Rev Mod Phys 68:1259–1273CrossRef
Zurück zum Zitat Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68:1259–1273CrossRef Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68:1259–1273CrossRef
Zurück zum Zitat Janssen HA, Vereins Z (1895) Versuche ber getreidedruck in silozellen. Dtsch Eng 39:1045 Janssen HA, Vereins Z (1895) Versuche ber getreidedruck in silozellen. Dtsch Eng 39:1045
Zurück zum Zitat Jiang YM, Liu M (2004) Energy instability unjams sand and suspension. Phys Rev Lett 93:148001CrossRef Jiang YM, Liu M (2004) Energy instability unjams sand and suspension. Phys Rev Lett 93:148001CrossRef
Zurück zum Zitat Jiang Y, Liu M (2007) From elasticity to hypoplasticity: dynamics of granular solids. Phys Rev Lett 99:105501CrossRef Jiang Y, Liu M (2007) From elasticity to hypoplasticity: dynamics of granular solids. Phys Rev Lett 99:105501CrossRef
Zurück zum Zitat Jones RAL (2002) Soft condensed matter. Oxford University Press, Oxford Jones RAL (2002) Soft condensed matter. Oxford University Press, Oxford
Zurück zum Zitat Kadanoff LP (1999) Built upon sand: theoretical ideas inspired by granular flows. Rev Mod Phys 71:435–444CrossRef Kadanoff LP (1999) Built upon sand: theoretical ideas inspired by granular flows. Rev Mod Phys 71:435–444CrossRef
Zurück zum Zitat Katgert G, van Hecke M (2010) Jamming and geometry of two-dimensional foams. EPL 92:34002CrossRef Katgert G, van Hecke M (2010) Jamming and geometry of two-dimensional foams. EPL 92:34002CrossRef
Zurück zum Zitat Keys AS, Abate AR, Glotzer SC, Durian DJ (2007) Measurment of growing dynamical length scales and prediction of the jamming transition in a granular material. Nature 3:260–264 Keys AS, Abate AR, Glotzer SC, Durian DJ (2007) Measurment of growing dynamical length scales and prediction of the jamming transition in a granular material. Nature 3:260–264
Zurück zum Zitat Kivelson D, Tarjus G (1998) SuperArrhenius character of supercooled glass-forming liquids. J Non-Cryst Solids 86:235–237 Kivelson D, Tarjus G (1998) SuperArrhenius character of supercooled glass-forming liquids. J Non-Cryst Solids 86:235–237
Zurück zum Zitat Kleman M, Laverntovich OD (2002) Soft matter physics: an introduction. Springer, Berlin Kleman M, Laverntovich OD (2002) Soft matter physics: an introduction. Springer, Berlin
Zurück zum Zitat Kob W, Donati C, Plimpton SJ, Poole PH, Glotzer SC (1997) Dynamical heterogeneity in a supercooled Lennard-Jones mixture. Phys Rev Lett 79:2827–2830CrossRef Kob W, Donati C, Plimpton SJ, Poole PH, Glotzer SC (1997) Dynamical heterogeneity in a supercooled Lennard-Jones mixture. Phys Rev Lett 79:2827–2830CrossRef
Zurück zum Zitat Kumar A, Wu J (2004) Jamming phase diagram of colloidal dispersions by molecular dynamics simulations. Appl Phys Lett 84:4565–4567CrossRef Kumar A, Wu J (2004) Jamming phase diagram of colloidal dispersions by molecular dynamics simulations. Appl Phys Lett 84:4565–4567CrossRef
Zurück zum Zitat Langer SA, Liu AJ (1997) Effect of random packing on stress relaxation in foam. J Phys Chem B 101:8667–8671CrossRef Langer SA, Liu AJ (1997) Effect of random packing on stress relaxation in foam. J Phys Chem B 101:8667–8671CrossRef
Zurück zum Zitat Liu AJ, Nagel SR (2001) Jamming and rheology. Taylor and Francis, New York Liu AJ, Nagel SR (2001) Jamming and rheology. Taylor and Francis, New York
Zurück zum Zitat Liu AJ, Nagel SR, van Saarloos W, Wyart M (2011) The jamming scenario-an introduction and outlook. Oxford University Press, Oxford Liu AJ, Nagel SR, van Saarloos W, Wyart M (2011) The jamming scenario-an introduction and outlook. Oxford University Press, Oxford
Zurück zum Zitat Liu AJ, Nagel SR (1998) Jamming is not just cool anymore. Nature 396:21–22CrossRef Liu AJ, Nagel SR (1998) Jamming is not just cool anymore. Nature 396:21–22CrossRef
Zurück zum Zitat Lopatina LM, Olso Reichhardt CJ (2011) Jamming in granular polymers. Phys Rev E 84:011303CrossRef Lopatina LM, Olso Reichhardt CJ (2011) Jamming in granular polymers. Phys Rev E 84:011303CrossRef
Zurück zum Zitat Loppinet B, Stiakakis E, Vlassopoulos D, Fytas G, Roovers J (2001) Reversible thermal gelation in star polymers: an alternative route to jamming of soft matter. Macromolecules 34:8216–8223CrossRef Loppinet B, Stiakakis E, Vlassopoulos D, Fytas G, Roovers J (2001) Reversible thermal gelation in star polymers: an alternative route to jamming of soft matter. Macromolecules 34:8216–8223CrossRef
Zurück zum Zitat Lu K, Brodsky EE, Kavehpour HP (2008) A thermodynamic unification of jamming. Nature 4:404–407 Lu K, Brodsky EE, Kavehpour HP (2008) A thermodynamic unification of jamming. Nature 4:404–407
Zurück zum Zitat Majmudar TS, Sperl M, Luding S, Behringer RP (2007) Jamming transition in granular systems. Phys Rev Lett 98:058001CrossRef Majmudar TS, Sperl M, Luding S, Behringer RP (2007) Jamming transition in granular systems. Phys Rev Lett 98:058001CrossRef
Zurück zum Zitat Melroseb JR, Ball RC (1995) The pathological behavior of sheared hard-spheres with hydrodynamic interactions. Europhys Lett 32:535–540 Melroseb JR, Ball RC (1995) The pathological behavior of sheared hard-spheres with hydrodynamic interactions. Europhys Lett 32:535–540
Zurück zum Zitat Mills P, Rognon PG, Chevoir F (2008) Rheology and structure of granular materials near the jamming transition. EPL 81:64005CrossRef Mills P, Rognon PG, Chevoir F (2008) Rheology and structure of granular materials near the jamming transition. EPL 81:64005CrossRef
Zurück zum Zitat Mills P, Chevoir F (2009) Rheology of granular materials and sound emission near the jamming transition, powder and grains. In Nakagawa N, Luding S (eds) Proceedings of the 6th international conference on micromechanics of granular media Mills P, Chevoir F (2009) Rheology of granular materials and sound emission near the jamming transition, powder and grains. In Nakagawa N, Luding S (eds) Proceedings of the 6th international conference on micromechanics of granular media
Zurück zum Zitat Miskin MZ, Jaeger HM (2013) Adapting granular materials through artificial evolution. Nat Mater (published online) Miskin MZ, Jaeger HM (2013) Adapting granular materials through artificial evolution. Nat Mater (published online)
Zurück zum Zitat Müller O, Hahn D, Liu M (2006) Non-Newtonian behaviour in ferrofluids and magnetization relaxation. J Phys Condens Matter 18:s2623–s2632CrossRef Müller O, Hahn D, Liu M (2006) Non-Newtonian behaviour in ferrofluids and magnetization relaxation. J Phys Condens Matter 18:s2623–s2632CrossRef
Zurück zum Zitat Narumi T, Uematsu H, Hasegawa T (2008) Solid-like properties of liquid crystal in smectic phase controlled with electric field applied. In: Proceeding of AIP conference, vol 1027, pp 484–486 Narumi T, Uematsu H, Hasegawa T (2008) Solid-like properties of liquid crystal in smectic phase controlled with electric field applied. In: Proceeding of AIP conference, vol 1027, pp 484–486
Zurück zum Zitat O’Hern CS, Silbert LE, Liu AJ, Nagel SR (2003) Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys Rev E 68:011306CrossRef O’Hern CS, Silbert LE, Liu AJ, Nagel SR (2003) Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys Rev E 68:011306CrossRef
Zurück zum Zitat Olsson P (2010) Diffusion and velocity autocorrelation at the jamming transition. Phys Rev E 81: 040301(R) Olsson P (2010) Diffusion and velocity autocorrelation at the jamming transition. Phys Rev E 81: 040301(R)
Zurück zum Zitat Ovarlez G, Barral Q, Coussot P (2010) Three-dimensional jamming and flows of soft glassy materials. Nature 9:115–119CrossRef Ovarlez G, Barral Q, Coussot P (2010) Three-dimensional jamming and flows of soft glassy materials. Nature 9:115–119CrossRef
Zurück zum Zitat Owaga S (1978) In: Cowin SC, Satake M (eds) Proceedings of US-Japan seminaron continuum-mechanical and statistical approaches in the mechanics of granular materials, Gakujutsu Bunker Fukyukai, Tokyo, Japan Owaga S (1978) In: Cowin SC, Satake M (eds) Proceedings of US-Japan seminaron continuum-mechanical and statistical approaches in the mechanics of granular materials, Gakujutsu Bunker Fukyukai, Tokyo, Japan
Zurück zum Zitat Parisi G, Zamponi F (2010) Mean-field theory of hard sphere glasses and jamming. Rev Mod Phys 82:789–845CrossRef Parisi G, Zamponi F (2010) Mean-field theory of hard sphere glasses and jamming. Rev Mod Phys 82:789–845CrossRef
Zurück zum Zitat Piazza R (2011) Soft matter: the stuff that dreams are made of. Springer, BerlinCrossRef Piazza R (2011) Soft matter: the stuff that dreams are made of. Springer, BerlinCrossRef
Zurück zum Zitat Pontoni D, Finet S, Narayanan T, Rennie AR (2003) Interactions and kinetic arrest in an adhesive hard-sphere colloidal system. J Chem Phys 119:6157CrossRef Pontoni D, Finet S, Narayanan T, Rennie AR (2003) Interactions and kinetic arrest in an adhesive hard-sphere colloidal system. J Chem Phys 119:6157CrossRef
Zurück zum Zitat Poon W, McLeish T, Donald A (2002) Soft condensed matter: where physics meets biology. Phys Educ 37:25–33CrossRef Poon W, McLeish T, Donald A (2002) Soft condensed matter: where physics meets biology. Phys Educ 37:25–33CrossRef
Zurück zum Zitat Prasanth J, Ioan A (2012) Similarities between protein folding and granular jamming. Nature commun 3:2177 Prasanth J, Ioan A (2012) Similarities between protein folding and granular jamming. Nature commun 3:2177
Zurück zum Zitat Pusey PN, van Megan W (1987) Observation of a glass transition in suspensions of spherical colloidal particles. Phys Rev Lett 59:2083–2086 Pusey PN, van Megan W (1987) Observation of a glass transition in suspensions of spherical colloidal particles. Phys Rev Lett 59:2083–2086
Zurück zum Zitat Pusey PN (1991) Les Houches Summer School Proceedings. In: Hansen PJ, Levesque D, Zinn-Justin J (eds) Liquids, freezing and the glass transition Part II. Elsevier, Amsterdam Pusey PN (1991) Les Houches Summer School Proceedings. In: Hansen PJ, Levesque D, Zinn-Justin J (eds) Liquids, freezing and the glass transition Part II. Elsevier, Amsterdam
Zurück zum Zitat Reichl LE (1998) A modern course in statistical physics. Wiley interscience publication, New York Reichl LE (1998) A modern course in statistical physics. Wiley interscience publication, New York
Zurück zum Zitat Renn SR, Lubensky TC (1988) Abrikosov dislocation lattice in a model of the cholesterictosmectic-A transition. Phys Rev A 38(4):2132–2148 Renn SR, Lubensky TC (1988) Abrikosov dislocation lattice in a model of the cholesterictosmectic-A transition. Phys Rev A 38(4):2132–2148
Zurück zum Zitat Saitoh K, Magnanimo V, Luding S (2012) Slow dynamics near jamming. In: Proceeding of 28th international symposium on rarefied gas dynamics AIP conference, vol 1501, pp 1038–1043 Saitoh K, Magnanimo V, Luding S (2012) Slow dynamics near jamming. In: Proceeding of 28th international symposium on rarefied gas dynamics AIP conference, vol 1501, pp 1038–1043
Zurück zum Zitat Sander LM (2000) Diffusion-limited aggregation: a kinetic critical phenomenon? Cont Phys 41:203–218CrossRef Sander LM (2000) Diffusion-limited aggregation: a kinetic critical phenomenon? Cont Phys 41:203–218CrossRef
Zurück zum Zitat Savage SB (1984) The mechanics of rapid granular flows. Adv Appl Mech 24:289CrossRef Savage SB (1984) The mechanics of rapid granular flows. Adv Appl Mech 24:289CrossRef
Zurück zum Zitat Segre PN, Prasad V, Schofield AB, Weitz DA (2001) Glasslike kinetic arrest at the colloidal-gelation transition. Phys Rev Lett 86:6042CrossRef Segre PN, Prasad V, Schofield AB, Weitz DA (2001) Glasslike kinetic arrest at the colloidal-gelation transition. Phys Rev Lett 86:6042CrossRef
Zurück zum Zitat Siemens AON, van Hecke M (2010) Jamming: a simple introduction. Physica A 389:4255–4264CrossRef Siemens AON, van Hecke M (2010) Jamming: a simple introduction. Physica A 389:4255–4264CrossRef
Zurück zum Zitat Silbert LE, Liu AJ, Nagel SR (2005) Vibrations and diverging length scales near the unjamming transition. Phys Rev Lett 95:098301CrossRef Silbert LE, Liu AJ, Nagel SR (2005) Vibrations and diverging length scales near the unjamming transition. Phys Rev Lett 95:098301CrossRef
Zurück zum Zitat Song Ch, Wang P, Makse H (2008) A phase diagram for jammed matter. Nature 453:629–632CrossRef Song Ch, Wang P, Makse H (2008) A phase diagram for jammed matter. Nature 453:629–632CrossRef
Zurück zum Zitat Stiakakis E, Vlassopoulos D, Loppinet B, Roovers J, Meier G (2002) Kinetic arrest of crowded soft spheres in solvents of varying quality. Phys Rev E 66:051804CrossRef Stiakakis E, Vlassopoulos D, Loppinet B, Roovers J, Meier G (2002) Kinetic arrest of crowded soft spheres in solvents of varying quality. Phys Rev E 66:051804CrossRef
Zurück zum Zitat Suarez MA, Kern N, Pitard E, Kob W (2009) Out-of-equilibrium dynamics of a fractal model gel. J Chem Phys 130:194904CrossRef Suarez MA, Kern N, Pitard E, Kob W (2009) Out-of-equilibrium dynamics of a fractal model gel. J Chem Phys 130:194904CrossRef
Zurück zum Zitat Tighe BP (2011) Relaxation and rheology near jamming. Phys Rev Lett 107:158303CrossRef Tighe BP (2011) Relaxation and rheology near jamming. Phys Rev Lett 107:158303CrossRef
Zurück zum Zitat Trappe V, Prassad V, Cipelletti L, Segre PN, Weitz DA (2001) Jamming phase diagram for attractive particles. Nature 411:772–775CrossRef Trappe V, Prassad V, Cipelletti L, Segre PN, Weitz DA (2001) Jamming phase diagram for attractive particles. Nature 411:772–775CrossRef
Zurück zum Zitat Valverde JM, Espin MJ, Quintanilla MAS, Castellanos A (2010) Fluid to solid transition in magnetofluidized beds of fine powders. J Appl Phys 108:054903CrossRef Valverde JM, Espin MJ, Quintanilla MAS, Castellanos A (2010) Fluid to solid transition in magnetofluidized beds of fine powders. J Appl Phys 108:054903CrossRef
Zurück zum Zitat van Hecke M (2010) Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J Phys Condens Matter 22: 033101 van Hecke M (2010) Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J Phys Condens Matter 22: 033101
Zurück zum Zitat Vitelli V (2010) Attenuation of shear sound waves in jammed solids. Soft Matter 6:3007–3012CrossRef Vitelli V (2010) Attenuation of shear sound waves in jammed solids. Soft Matter 6:3007–3012CrossRef
Zurück zum Zitat Vollmayr-Lee K, Kob W, Binder K, Zippelius A (2002) Dynamical heterogeneities below the glass transition. J Chem Phys 116:5158CrossRef Vollmayr-Lee K, Kob W, Binder K, Zippelius A (2002) Dynamical heterogeneities below the glass transition. J Chem Phys 116:5158CrossRef
Zurück zum Zitat Walton OR, Braun RL (1986) Viscosity, granular-temperature and stress calculations for shearing assemblies of inelastic, frictional disks. J Rheology 30:949CrossRef Walton OR, Braun RL (1986) Viscosity, granular-temperature and stress calculations for shearing assemblies of inelastic, frictional disks. J Rheology 30:949CrossRef
Zurück zum Zitat Warr S, Huntley JM (1995) Energy input and scaling laws for a single particle vibrating in one dimension. Phys Rev E 52:5596–5601CrossRef Warr S, Huntley JM (1995) Energy input and scaling laws for a single particle vibrating in one dimension. Phys Rev E 52:5596–5601CrossRef
Zurück zum Zitat Warr S, Huntley JM, Jaques GTH (1995) Fluidization of a two-dimensional granular systems: experimental study and scaling behaviour. Phys Rev E 52:5583–5595CrossRef Warr S, Huntley JM, Jaques GTH (1995) Fluidization of a two-dimensional granular systems: experimental study and scaling behaviour. Phys Rev E 52:5583–5595CrossRef
Zurück zum Zitat Watanabe K, Narumi T, Watanabe H, Hasegawa T (2006) Influence of several conditions on yield stress of smectic liquid crystal. In: Proceeding of JSME fluid engineering conference, pp 06–21, CD Watanabe K, Narumi T, Watanabe H, Hasegawa T (2006) Influence of several conditions on yield stress of smectic liquid crystal. In: Proceeding of JSME fluid engineering conference, pp 06–21, CD
Zurück zum Zitat Weaire D (1999) A short history of packing problems. Forma 14:279285 Weaire D (1999) A short history of packing problems. Forma 14:279285
Zurück zum Zitat Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287:627–631CrossRef Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287:627–631CrossRef
Zurück zum Zitat Weeks ER (2012) Melting colloidal crystals from the inside out. Science 338:55–56CrossRef Weeks ER (2012) Melting colloidal crystals from the inside out. Science 338:55–56CrossRef
Zurück zum Zitat Wilcox AJ, Choy J, Bustamante C, Matouschek A (2000) Effect of the protein structure on mitochondrial import. Proc Natl Acad Sci 9:1399–1401 Wilcox AJ, Choy J, Bustamante C, Matouschek A (2000) Effect of the protein structure on mitochondrial import. Proc Natl Acad Sci 9:1399–1401
Zurück zum Zitat Witten TA (1999) Insights from soft condensed matter. Rev. Mod. Phys. 71:S367–S373CrossRef Witten TA (1999) Insights from soft condensed matter. Rev. Mod. Phys. 71:S367–S373CrossRef
Zurück zum Zitat Witten TA (2005) How Soft Matter correlates: three examples. J Phys Condens Matter 17:S1651–S1658CrossRef Witten TA (2005) How Soft Matter correlates: three examples. J Phys Condens Matter 17:S1651–S1658CrossRef
Zurück zum Zitat Xu N (2011) Mechanical, vibrational, and dynamical properties of amorphous systems near jamming. Front Phys 6:109–123CrossRef Xu N (2011) Mechanical, vibrational, and dynamical properties of amorphous systems near jamming. Front Phys 6:109–123CrossRef
Zurück zum Zitat Zhang Z, Xu N, Chen DTN, Yunker P, Alsayed AM, Aptowicz KB, Habdas P, Liu AJ, Nagel SR, Yodh AG (2009) Thermal vestige of the zero-temperature jamming transition. Nature 459:230–233CrossRef Zhang Z, Xu N, Chen DTN, Yunker P, Alsayed AM, Aptowicz KB, Habdas P, Liu AJ, Nagel SR, Yodh AG (2009) Thermal vestige of the zero-temperature jamming transition. Nature 459:230–233CrossRef
Zurück zum Zitat Zhang HP, Makse HA (2009) Jamming transition in emulsions and granular materials. Phys Rev E 72:011301CrossRef Zhang HP, Makse HA (2009) Jamming transition in emulsions and granular materials. Phys Rev E 72:011301CrossRef
Zurück zum Zitat Zhao C, Tian K, Xu N (2011) New jamming scenario: from marginal jamming to deep jamming. Phys Rev Lett 106:125503CrossRef Zhao C, Tian K, Xu N (2011) New jamming scenario: from marginal jamming to deep jamming. Phys Rev Lett 106:125503CrossRef
Metadaten
Titel
Complex Fluids, Soft Matter and the Jamming Transition Problem
verfasst von
Alberto A. Díaz
Leonardo Trujillo
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-00191-3_10