Skip to main content

2018 | OriginalPaper | Buchkapitel

Complex Networks and Hydrologic Applications

verfasst von : Bellie Sivakumar, Carlos E. Puente, Mahesh L. Maskey

Erschienen in: Advances in Nonlinear Geosciences

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Connections are ubiquitous in hydrology. However, understanding the nature and extent of connections in hydrologic systems has and continues to be a tremendous challenge. In recent years, applications of the concepts of complex networks to study connections in hydrologic systems have started to emerge. This chapter aims to offer an overview of the science of complex networks and its applications in hydrology. First, the basic concept of a network, the history of development of network theory, and some important measures of network properties are presented. Next, applications of complex networks in hydrology are reviewed, including studies on spatial connections, temporal connections, and catchment classification. Finally, some remarks on future directions are made.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bak, P. 1996. How nature works: the science of self-organized criticality, 212 pp. New York: Springer-Verlag.CrossRef Bak, P. 1996. How nature works: the science of self-organized criticality, 212 pp. New York: Springer-Verlag.CrossRef
Zurück zum Zitat Barabási, A.-L. 2002. Linked: the new science of networks. Cambridge, MA: Perseus. Barabási, A.-L. 2002. Linked: the new science of networks. Cambridge, MA: Perseus.
Zurück zum Zitat Barabási, A.-L., and R. Albert. 1999. Emergence of scaling in random networks. Science 286: 509–512.CrossRef Barabási, A.-L., and R. Albert. 1999. Emergence of scaling in random networks. Science 286: 509–512.CrossRef
Zurück zum Zitat Barnsley, F.M. 2012. Fractals everywhere. Mineola, New York: Dover Publications. Barnsley, F.M. 2012. Fractals everywhere. Mineola, New York: Dover Publications.
Zurück zum Zitat Barrat, A., and M. Weigt. 2000. On the properties of small-world networks. The European Physical Journal B 13: 547–560.CrossRef Barrat, A., and M. Weigt. 2000. On the properties of small-world networks. The European Physical Journal B 13: 547–560.CrossRef
Zurück zum Zitat Bavelas, A. 1948. A mathematical model for group structure. Human Organization 7: 16–30.CrossRef Bavelas, A. 1948. A mathematical model for group structure. Human Organization 7: 16–30.CrossRef
Zurück zum Zitat Blondel, V.D., J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of Statistical Mechanics 2008 (10): P10008.CrossRef Blondel, V.D., J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of Statistical Mechanics 2008 (10): P10008.CrossRef
Zurück zum Zitat Boers, N., B. Bookhagen, N. Marwan, J. Kurths, and J. Marengo. 2013. Complex networks identify spatial patterns of extreme rainfall events of the South American Monsoon System. Geophysical Research Letters 40: 1–7. doi:10.1002/grl.50681.CrossRef Boers, N., B. Bookhagen, N. Marwan, J. Kurths, and J. Marengo. 2013. Complex networks identify spatial patterns of extreme rainfall events of the South American Monsoon System. Geophysical Research Letters 40: 1–7. doi:10.​1002/​grl.​50681.CrossRef
Zurück zum Zitat Braga, A.C., L.G.A. Alves, L.S. Costa, A.A. Ribeiro, M.M.A. de Jesus, A.A. Tateishi, and H.V. Ribeiro. 2016. Characterization of river flow fluctuations via horizontal visibility graphs. Physica A 444: 1003–1011.CrossRef Braga, A.C., L.G.A. Alves, L.S. Costa, A.A. Ribeiro, M.M.A. de Jesus, A.A. Tateishi, and H.V. Ribeiro. 2016. Characterization of river flow fluctuations via horizontal visibility graphs. Physica A 444: 1003–1011.CrossRef
Zurück zum Zitat Carr, J., P. D’Odorico, F. Laio, and L. Ridolfi. 2012. On the temporal variability of the virtual water network. Geophysical Research Letters 39: L06404. doi:10.1029/2012GL051247.CrossRef Carr, J., P. D’Odorico, F. Laio, and L. Ridolfi. 2012. On the temporal variability of the virtual water network. Geophysical Research Letters 39: L06404. doi:10.​1029/​2012GL051247.CrossRef
Zurück zum Zitat Cayley, A. 1857. On the theory of the analytical forms called trees. Philosophical Magazine, Ser IV 13 (85): 172–176. Cayley, A. 1857. On the theory of the analytical forms called trees. Philosophical Magazine, Ser IV 13 (85): 172–176.
Zurück zum Zitat Clauset, A., M.E.J. Newman, and C. Moore. 2004. Finding community structure in very large networks. Physical Review E 70 (6): P066111.CrossRef Clauset, A., M.E.J. Newman, and C. Moore. 2004. Finding community structure in very large networks. Physical Review E 70 (6): P066111.CrossRef
Zurück zum Zitat Clauset, A., C. Rohilla Shalizi, and M.E.J. Newman. 2010. Power-law distribution in empirical data. SIAM Review 51: 661–703.CrossRef Clauset, A., C. Rohilla Shalizi, and M.E.J. Newman. 2010. Power-law distribution in empirical data. SIAM Review 51: 661–703.CrossRef
Zurück zum Zitat Coffman, D.M., and A.K. Turner. 1971. Computer determination of the geometry and topology of stream networks. Water Resources Research 7 (2): 419–423.CrossRef Coffman, D.M., and A.K. Turner. 1971. Computer determination of the geometry and topology of stream networks. Water Resources Research 7 (2): 419–423.CrossRef
Zurück zum Zitat Colizza, V., V.R. Banavar, A. Maritan, and A. Rinaldo. 2004. Network structures from selection principles. Physical Review Letters 92 (19): 198701.CrossRef Colizza, V., V.R. Banavar, A. Maritan, and A. Rinaldo. 2004. Network structures from selection principles. Physical Review Letters 92 (19): 198701.CrossRef
Zurück zum Zitat Czuba, J.A., and E. Foufoula-Georgiou. 2014. A network-based framework for identifying potential synchronizations and amplifications of sediment delivery in river basins. Water Resources Research 50: 3826–3851.CrossRef Czuba, J.A., and E. Foufoula-Georgiou. 2014. A network-based framework for identifying potential synchronizations and amplifications of sediment delivery in river basins. Water Resources Research 50: 3826–3851.CrossRef
Zurück zum Zitat ———. 2015. Dynamic connectivity in a fluvial network for identifying hotspots of geomorphic change. Water Resources Research 51: 1401–1421.CrossRef ———. 2015. Dynamic connectivity in a fluvial network for identifying hotspots of geomorphic change. Water Resources Research 51: 1401–1421.CrossRef
Zurück zum Zitat Costa, L.F., F.A. Rodriguez, G. Traviesco, and P.R. Villas Boas. 2007. Characterization of complex networks: a survey of measurements. Advances in Physics 56 (1): 167–242.CrossRef Costa, L.F., F.A. Rodriguez, G. Traviesco, and P.R. Villas Boas. 2007. Characterization of complex networks: a survey of measurements. Advances in Physics 56 (1): 167–242.CrossRef
Zurück zum Zitat Dalin, C., S. Suweis, M. Konar, N. Hanasaki, and I. Rodriguez-Iturbe. 2012. Modeling past and future structure of the global virtual water trade network. Geophysical Research Letters 39: L24402. doi:10.1029/2012GL053871.CrossRef Dalin, C., S. Suweis, M. Konar, N. Hanasaki, and I. Rodriguez-Iturbe. 2012. Modeling past and future structure of the global virtual water trade network. Geophysical Research Letters 39: L24402. doi:10.​1029/​2012GL053871.CrossRef
Zurück zum Zitat Dalin, C., N. Hanasaki, H. Qui, D.L. Mauzerall, and I. Rodriguez-Iturbe. 2014. Water resources transfers through Chinese interprovincial and foreign food trade. Proceedings of the National Academy of Sciences 111 (27): 9774–9779.CrossRef Dalin, C., N. Hanasaki, H. Qui, D.L. Mauzerall, and I. Rodriguez-Iturbe. 2014. Water resources transfers through Chinese interprovincial and foreign food trade. Proceedings of the National Academy of Sciences 111 (27): 9774–9779.CrossRef
Zurück zum Zitat Donges, J.F., Y. Zou, N. Marwan, and J. Kurths. 2009. Complex networks in climate dynamics. European Physics Journal 174: 157–179. Donges, J.F., Y. Zou, N. Marwan, and J. Kurths. 2009. Complex networks in climate dynamics. European Physics Journal 174: 157–179.
Zurück zum Zitat Donner, R.V., and J.F. Donges. 2012. Visibility graph analysis of geophysical time series: potentials and possible pitfalls. Acta Geophysica 60 (3): 589–623.CrossRef Donner, R.V., and J.F. Donges. 2012. Visibility graph analysis of geophysical time series: potentials and possible pitfalls. Acta Geophysica 60 (3): 589–623.CrossRef
Zurück zum Zitat Donner, R.V., Y. Zou, J.F. Donges, N. Marwan, and J. Kurths. 2010. Recurrence networks—a novel paradigm for nonlinear time series analysis. New Journal of Physics 12 (3): 033025.CrossRef Donner, R.V., Y. Zou, J.F. Donges, N. Marwan, and J. Kurths. 2010. Recurrence networks—a novel paradigm for nonlinear time series analysis. New Journal of Physics 12 (3): 033025.CrossRef
Zurück zum Zitat Donner, R.V., M. Small, J.F. Donges, N. Marwan, Y. Zou, R. Xiang, and R. Kurths. 2011. Recurrence-based time series analysis by means of complex network methods. International Journal of Bifurcation and Chaos 21 (4): 1019–1046.CrossRef Donner, R.V., M. Small, J.F. Donges, N. Marwan, Y. Zou, R. Xiang, and R. Kurths. 2011. Recurrence-based time series analysis by means of complex network methods. International Journal of Bifurcation and Chaos 21 (4): 1019–1046.CrossRef
Zurück zum Zitat Dooge, J.C.I. 1986. Looking for hydrologic laws. Water Resources Research 22 (9): 46S–58S.CrossRef Dooge, J.C.I. 1986. Looking for hydrologic laws. Water Resources Research 22 (9): 46S–58S.CrossRef
Zurück zum Zitat Erdös, P., and A. Rényi. 1959. On random graphs, I. Publicationes Mathematicae Debrecen 6: 290–297. Erdös, P., and A. Rényi. 1959. On random graphs, I. Publicationes Mathematicae Debrecen 6: 290–297.
Zurück zum Zitat ———. 1960. On the evolution of random graphs. Publication of Institute of Hungarian Academy of Sciences 5: 17–61. ———. 1960. On the evolution of random graphs. Publication of Institute of Hungarian Academy of Sciences 5: 17–61.
Zurück zum Zitat Estrada, E. 2012. The structure of complex networks: theory and applications. Oxford University Press, New York, NY, USA. Estrada, E. 2012. The structure of complex networks: theory and applications. Oxford University Press, New York, NY, USA.
Zurück zum Zitat Euler, L. 1741. Solutio problematis ad geometriam situs pertinentis. Comment Academic Science Petropolitanae 8: 128–140. Euler, L. 1741. Solutio problematis ad geometriam situs pertinentis. Comment Academic Science Petropolitanae 8: 128–140.
Zurück zum Zitat Fang, F., B. Sivakumar, and F.M. Woldemeskel. 2017. Complex networks, community structure, and catchment classification in a large-scale river basin. Journal of Hydrology 545: 478–493.CrossRef Fang, F., B. Sivakumar, and F.M. Woldemeskel. 2017. Complex networks, community structure, and catchment classification in a large-scale river basin. Journal of Hydrology 545: 478–493.CrossRef
Zurück zum Zitat Girvan, M., and M.E. Newman. 2002. Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99 (12): 7821–7826.CrossRef Girvan, M., and M.E. Newman. 2002. Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99 (12): 7821–7826.CrossRef
Zurück zum Zitat Gupta, V.K., I. Rodriguez-Iturbe, and E.F. Wood. 1986. Scale problems in hydrology: runoff generation and basin response. Water science and technology library series. Dordrecht, The Netherlands: Springer.CrossRef Gupta, V.K., I. Rodriguez-Iturbe, and E.F. Wood. 1986. Scale problems in hydrology: runoff generation and basin response. Water science and technology library series. Dordrecht, The Netherlands: Springer.CrossRef
Zurück zum Zitat Halverson, M., and S. Fleming. 2015. Complex networks, streamflow, and hydrometric monitoring system design. Hydrology and Earth System Sciences 19: 3301–3318.CrossRef Halverson, M., and S. Fleming. 2015. Complex networks, streamflow, and hydrometric monitoring system design. Hydrology and Earth System Sciences 19: 3301–3318.CrossRef
Zurück zum Zitat Horton, R.E. 1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 56: 275–370.CrossRef Horton, R.E. 1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 56: 275–370.CrossRef
Zurück zum Zitat Jeong, H., S. Mason, A.-L. Barabási, and Z.N. Oltvai. 2001. Lethality and centrality in protein networks. Nature 411: 41–42.CrossRef Jeong, H., S. Mason, A.-L. Barabási, and Z.N. Oltvai. 2001. Lethality and centrality in protein networks. Nature 411: 41–42.CrossRef
Zurück zum Zitat Jha, S.K., H. Zhao, F.M. Woldemeskel, and B. Sivakumar. 2015. Network theory and spatial rainfall connections: an interpretation. Journal of Hydrology 527: 13–19.CrossRef Jha, S.K., H. Zhao, F.M. Woldemeskel, and B. Sivakumar. 2015. Network theory and spatial rainfall connections: an interpretation. Journal of Hydrology 527: 13–19.CrossRef
Zurück zum Zitat Keller, E.F. 2005. Revisiting ‘scale-free’ networks. BioEssay 27: 1060–1068.CrossRef Keller, E.F. 2005. Revisiting ‘scale-free’ networks. BioEssay 27: 1060–1068.CrossRef
Zurück zum Zitat Kim, D.-H., J.D. Noh, and H. Jeong. 2004. Scale-free trees: the skeletons of complex networks. Physical Review E 70: 046126.CrossRef Kim, D.-H., J.D. Noh, and H. Jeong. 2004. Scale-free trees: the skeletons of complex networks. Physical Review E 70: 046126.CrossRef
Zurück zum Zitat Kirkby, M.J. 1976. Tests of the random network model, and its application to basin hydrology. Earth Surface Processes and Landforms 1 (3): 197–212.CrossRef Kirkby, M.J. 1976. Tests of the random network model, and its application to basin hydrology. Earth Surface Processes and Landforms 1 (3): 197–212.CrossRef
Zurück zum Zitat Konar, M., and K.K. Caylor. 2013. Virtual water trade and development in Africa. Hydrology and Earth System Sciences 17: 3969–3982.CrossRef Konar, M., and K.K. Caylor. 2013. Virtual water trade and development in Africa. Hydrology and Earth System Sciences 17: 3969–3982.CrossRef
Zurück zum Zitat Konar, M., C. Dalin, S. Suweis, N. Hanasaki, A. Rinaldo, and I. Rodriguez-Iturbe. 2011. Water for food: the global virtual water trade network. Water Resources Research 47: W05520. doi:10.1029/2010WR010307.CrossRef Konar, M., C. Dalin, S. Suweis, N. Hanasaki, A. Rinaldo, and I. Rodriguez-Iturbe. 2011. Water for food: the global virtual water trade network. Water Resources Research 47: W05520. doi:10.​1029/​2010WR010307.CrossRef
Zurück zum Zitat Konar, M., Z. Hussein, N. Hanasaki, D.L. Mauzerall, and I. Rodriguez-Iturbe. 2013. Virtual water trade flows and savings under climate change. Hydrology and Earth System Sciences 17: 3219–3234.CrossRef Konar, M., Z. Hussein, N. Hanasaki, D.L. Mauzerall, and I. Rodriguez-Iturbe. 2013. Virtual water trade flows and savings under climate change. Hydrology and Earth System Sciences 17: 3219–3234.CrossRef
Zurück zum Zitat Latora, V., and M. Marchiori. 2001. Efficient behavior of small-world networks. Physical Review Letters 87 (19): 198701.CrossRef Latora, V., and M. Marchiori. 2001. Efficient behavior of small-world networks. Physical Review Letters 87 (19): 198701.CrossRef
Zurück zum Zitat Leavitt, H.J. 1951. Some effects of certain communication patterns on group performance. Journal of Abnormal and Social Psychology 46: 38–50.CrossRef Leavitt, H.J. 1951. Some effects of certain communication patterns on group performance. Journal of Abnormal and Social Psychology 46: 38–50.CrossRef
Zurück zum Zitat Listing, J.B. 1848. Vorstudien zur Topologie, 811–875. Göttingen: Vandenhoeck und Ruprecht. Listing, J.B. 1848. Vorstudien zur Topologie, 811–875. Göttingen: Vandenhoeck und Ruprecht.
Zurück zum Zitat Lorenz, E.N. 1963. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20 (2): 130–141.CrossRef Lorenz, E.N. 1963. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20 (2): 130–141.CrossRef
Zurück zum Zitat Malik, N., B. Bookhagen, N. Marwan, and J. Kurths. 2012. Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Climate Dynamics 39: 971–987.CrossRef Malik, N., B. Bookhagen, N. Marwan, and J. Kurths. 2012. Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Climate Dynamics 39: 971–987.CrossRef
Zurück zum Zitat Mandelbrot, B.B. 1982. The fractal geometry of nature. New York: W. H. Freeman and Company. Mandelbrot, B.B. 1982. The fractal geometry of nature. New York: W. H. Freeman and Company.
Zurück zum Zitat Masselink, R.J.H., T. Heckmann, A.J.A.M. Temme, N.S. Anders, H.P.A. Gooren, and S.D. Deesstra. 2017. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes 31: 207–220.CrossRef Masselink, R.J.H., T. Heckmann, A.J.A.M. Temme, N.S. Anders, H.P.A. Gooren, and S.D. Deesstra. 2017. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes 31: 207–220.CrossRef
Zurück zum Zitat Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002. Network motifs: simple building blocks of complex networks. Science 298: 824–827.CrossRef Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002. Network motifs: simple building blocks of complex networks. Science 298: 824–827.CrossRef
Zurück zum Zitat Montanari, A., G. Young, H.H.G. Savenije, D. Hughes, T. Wagner, L.L. Ren, D. Koutsoyiannis, C. Cudennec, E. Toth, S. Grimaldi, G. Blöschl, M. Sivapalan, K. Beven, H. Gupta, M. Hipsey, B. Schaefli, B. Arheimer, E. Boegh, S.J. Schymanski, G. Di Baldassarre, B. Yu, P. Hubert, Y. Huang, A. Schumann, D.A. Post, V. Srinivasan, C. Harman, S. Thomson, M. Rogger, A. Viglione, H. McMillan, G. Characklis, G. Pang, and V. Belyaev. 2013. “Panta Rhei—Everything Flows”: change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal 58 (6): 1256–1275.CrossRef Montanari, A., G. Young, H.H.G. Savenije, D. Hughes, T. Wagner, L.L. Ren, D. Koutsoyiannis, C. Cudennec, E. Toth, S. Grimaldi, G. Blöschl, M. Sivapalan, K. Beven, H. Gupta, M. Hipsey, B. Schaefli, B. Arheimer, E. Boegh, S.J. Schymanski, G. Di Baldassarre, B. Yu, P. Hubert, Y. Huang, A. Schumann, D.A. Post, V. Srinivasan, C. Harman, S. Thomson, M. Rogger, A. Viglione, H. McMillan, G. Characklis, G. Pang, and V. Belyaev. 2013. “Panta Rhei—Everything Flows”: change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal 58 (6): 1256–1275.CrossRef
Zurück zum Zitat Moon, J.W. 1980. On the expected diameter of random channel networks. Water Resources Research 16 (6): 1119–1120.CrossRef Moon, J.W. 1980. On the expected diameter of random channel networks. Water Resources Research 16 (6): 1119–1120.CrossRef
Zurück zum Zitat Newman, M.E.J. 2001a. Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality. Physical Review E 64: 016132.CrossRef Newman, M.E.J. 2001a. Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality. Physical Review E 64: 016132.CrossRef
Zurück zum Zitat ———. 2001b. The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences USA 98: 404–409.CrossRef ———. 2001b. The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences USA 98: 404–409.CrossRef
Zurück zum Zitat ———. 2006. Finding community structure in networks using the eigenvectors of matrices. Physical Review E 74: 036104.CrossRef ———. 2006. Finding community structure in networks using the eigenvectors of matrices. Physical Review E 74: 036104.CrossRef
Zurück zum Zitat Newman, M.E.J., and M. Girvan. 2004. Finding and evaluating community structure in networks. Physical Review E 69: 026113.CrossRef Newman, M.E.J., and M. Girvan. 2004. Finding and evaluating community structure in networks. Physical Review E 69: 026113.CrossRef
Zurück zum Zitat O’Bannon, C., J. Carr, D.A. Seekell, and P. D’Odorico. 2014. Globalization of agricultural pollution due to international trade. Hydrology and Earth System Sciences 18: 503–510.CrossRef O’Bannon, C., J. Carr, D.A. Seekell, and P. D’Odorico. 2014. Globalization of agricultural pollution due to international trade. Hydrology and Earth System Sciences 18: 503–510.CrossRef
Zurück zum Zitat Paluš, M., D. Hartman, J. Hlinka, and M. Vejmelka. 2011. Discerning connectivity from dynamics in climate networks. Nonlinear Processes in Geophysics 18 (5): 751–763.CrossRef Paluš, M., D. Hartman, J. Hlinka, and M. Vejmelka. 2011. Discerning connectivity from dynamics in climate networks. Nonlinear Processes in Geophysics 18 (5): 751–763.CrossRef
Zurück zum Zitat Paola, C., E. Foufoula-Georgiou, W.E. Dietrich, M. Hondzo, D. Mohrig, G. Parker, M.E. Power, I. Rodriguez-Iturbe, V. Voller, and P. Wilcock. 2006. Toward a unified science of the Earth’s surface: opportunities for synthesis among hydrology, geomorphology, geochemistry, and ecology. Water Resources Research 42: W03S10. doi:10.1029/2005WR004336.CrossRef Paola, C., E. Foufoula-Georgiou, W.E. Dietrich, M. Hondzo, D. Mohrig, G. Parker, M.E. Power, I. Rodriguez-Iturbe, V. Voller, and P. Wilcock. 2006. Toward a unified science of the Earth’s surface: opportunities for synthesis among hydrology, geomorphology, geochemistry, and ecology. Water Resources Research 42: W03S10. doi:10.​1029/​2005WR004336.CrossRef
Zurück zum Zitat Passalacqua, P. 2017. The Delta Connectome: A network-based framework for studying connectivity in river deltas. Geomorphology 277: 50–62.CrossRef Passalacqua, P. 2017. The Delta Connectome: A network-based framework for studying connectivity in river deltas. Geomorphology 277: 50–62.CrossRef
Zurück zum Zitat Phillips, J.D., W. Schwanghart, and T. Heckmann. 2015. Graph theory in geosciences. Earth-Science Reviews 143: 147–160.CrossRef Phillips, J.D., W. Schwanghart, and T. Heckmann. 2015. Graph theory in geosciences. Earth-Science Reviews 143: 147–160.CrossRef
Zurück zum Zitat Pons, P., and M. Latapy. 2006. Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications 10 (2): 191–218.CrossRef Pons, P., and M. Latapy. 2006. Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications 10 (2): 191–218.CrossRef
Zurück zum Zitat Raghavan, U.N., R. Albert, and S. Kumara. 2007. Near linear time algorithm to detect community structures in large-scale networks. Physical Review E 76: 036106.CrossRef Raghavan, U.N., R. Albert, and S. Kumara. 2007. Near linear time algorithm to detect community structures in large-scale networks. Physical Review E 76: 036106.CrossRef
Zurück zum Zitat Rinaldo, A., R. Rigon, J.R. Banavar, A. Maritan, and I. Rodriguez-Iturbe. 2014. Evolution and selection of river networks: Statics, dynamics, and complexity. Proceedings of the National Academy of Sciences USA 111 (7): 2417–2424.CrossRef Rinaldo, A., R. Rigon, J.R. Banavar, A. Maritan, and I. Rodriguez-Iturbe. 2014. Evolution and selection of river networks: Statics, dynamics, and complexity. Proceedings of the National Academy of Sciences USA 111 (7): 2417–2424.CrossRef
Zurück zum Zitat Salas, J.D., J.W. Delleur, V. Yevjevich, and W.L. Lane. 1995. Applied modeling of hydrologic time series. Littleton, Colorado: Water Resources Publications. Salas, J.D., J.W. Delleur, V. Yevjevich, and W.L. Lane. 1995. Applied modeling of hydrologic time series. Littleton, Colorado: Water Resources Publications.
Zurück zum Zitat Scheidegger, A.E. 1967. On the topology of river nets. Water Resources Research 3 (1): 103–106.CrossRef Scheidegger, A.E. 1967. On the topology of river nets. Water Resources Research 3 (1): 103–106.CrossRef
Zurück zum Zitat Serinaldi, F., and C.G. Kilsby. 2016. Irreversibility and complex network behavior of stream flow fluctuations. Physica A 450: 585–600.CrossRef Serinaldi, F., and C.G. Kilsby. 2016. Irreversibility and complex network behavior of stream flow fluctuations. Physica A 450: 585–600.CrossRef
Zurück zum Zitat Shreve, R.L. 1966. Statistical law of stream numbers. Journal of Geology 74: 17–37.CrossRef Shreve, R.L. 1966. Statistical law of stream numbers. Journal of Geology 74: 17–37.CrossRef
Zurück zum Zitat ———. 1967. Infinite topologically random channel networks. Journal of Geology 75: 178–186.CrossRef ———. 1967. Infinite topologically random channel networks. Journal of Geology 75: 178–186.CrossRef
Zurück zum Zitat ———. 1969. Stream lengths and basin areas in topologically random channel networks. Journal of Geology 77: 397–414.CrossRef ———. 1969. Stream lengths and basin areas in topologically random channel networks. Journal of Geology 77: 397–414.CrossRef
Zurück zum Zitat Sivakumar, B. 2008. Dominant processes concept, model simplification and classification framework in catchment hydrology. Stochastic Environmental Research and Risk Assessment 22 (6): 737–748.CrossRef Sivakumar, B. 2008. Dominant processes concept, model simplification and classification framework in catchment hydrology. Stochastic Environmental Research and Risk Assessment 22 (6): 737–748.CrossRef
Zurück zum Zitat ———. 2011a. Global climate change and its impacts on water resources planning and management: assessment and challenges. Stochastic Environmental Research and Risk Assessment 25 (4): 583–600.CrossRef ———. 2011a. Global climate change and its impacts on water resources planning and management: assessment and challenges. Stochastic Environmental Research and Risk Assessment 25 (4): 583–600.CrossRef
Zurück zum Zitat ———. 2011b. Water crisis: from conflict to cooperation–an overview. Hydrological Sciences Journal 56 (4): 531–552.CrossRef ———. 2011b. Water crisis: from conflict to cooperation–an overview. Hydrological Sciences Journal 56 (4): 531–552.CrossRef
Zurück zum Zitat ———. 2015. Networks: a generic theory for hydrology? Stochastic Environmental Research and Risk Assessment 29: 761–771.CrossRef ———. 2015. Networks: a generic theory for hydrology? Stochastic Environmental Research and Risk Assessment 29: 761–771.CrossRef
Zurück zum Zitat ———. 2017. Chaos in hydrology: bridging determinism and stochasticity, 394 pp. Dordrecht: Springer Science+Business Media.CrossRef ———. 2017. Chaos in hydrology: bridging determinism and stochasticity, 394 pp. Dordrecht: Springer Science+Business Media.CrossRef
Zurück zum Zitat Sivakumar, B., and F.M. Woldemeskel. 2014. Complex networks for streamflow dynamics. Hydrology and Earth System Sciences 18: 4565–4578.CrossRef Sivakumar, B., and F.M. Woldemeskel. 2014. Complex networks for streamflow dynamics. Hydrology and Earth System Sciences 18: 4565–4578.CrossRef
Zurück zum Zitat ———. 2015. A network-based analysis of spatial rainfall connections. Environmental Modelling and Software 69: 55–62.CrossRef ———. 2015. A network-based analysis of spatial rainfall connections. Environmental Modelling and Software 69: 55–62.CrossRef
Zurück zum Zitat Smart, J.S. 1970. Use of topologic information in processing data for channel networks. Water Resources Research 6 (3): 932–936.CrossRef Smart, J.S. 1970. Use of topologic information in processing data for channel networks. Water Resources Research 6 (3): 932–936.CrossRef
Zurück zum Zitat Smart, J.S., and C. Werner. 1976. Applications of the random model of drainage composition. Earth Surface Processes and Landforms 1: 219–233.CrossRef Smart, J.S., and C. Werner. 1976. Applications of the random model of drainage composition. Earth Surface Processes and Landforms 1: 219–233.CrossRef
Zurück zum Zitat Steinhaeuser, K., and A.A. Tsonis. 2014. A climate model intercomparison at the dynamics level. Climate Dynamics 42: 1665–1670.CrossRef Steinhaeuser, K., and A.A. Tsonis. 2014. A climate model intercomparison at the dynamics level. Climate Dynamics 42: 1665–1670.CrossRef
Zurück zum Zitat Steinhaeuser, K., N.V. Chawla, and A.R. Ganguly. 2011. Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Statistical Analysis and Data Mining 4: 497–511.CrossRef Steinhaeuser, K., N.V. Chawla, and A.R. Ganguly. 2011. Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Statistical Analysis and Data Mining 4: 497–511.CrossRef
Zurück zum Zitat Steinhaeuser, K., A.R. Ganguly, and N.V. Chawla. 2012. Multivariate and multiscale dependence in the global climate system revealed through complex networks. Climate Dynamics 39: 889–895.CrossRef Steinhaeuser, K., A.R. Ganguly, and N.V. Chawla. 2012. Multivariate and multiscale dependence in the global climate system revealed through complex networks. Climate Dynamics 39: 889–895.CrossRef
Zurück zum Zitat Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union 38: 913–920.CrossRef Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union 38: 913–920.CrossRef
Zurück zum Zitat Suweis, S., M. Konar, C. Dalin, N. Hanasaki, A. Rinaldo, and I. Rodriguez-Iturbe. 2011. Structure and controls of the global virtual water trade network. Geophysical Research Letters 38: L10403. doi:10.1029/2011GL046837.CrossRef Suweis, S., M. Konar, C. Dalin, N. Hanasaki, A. Rinaldo, and I. Rodriguez-Iturbe. 2011. Structure and controls of the global virtual water trade network. Geophysical Research Letters 38: L10403. doi:10.​1029/​2011GL046837.CrossRef
Zurück zum Zitat Tamea, S., P. Allamano, J. Carr, P. Claps, F. Laio, and L. Ridolfi. 2013. Local and global perspectives on the virtual water trade. Hydrology and Earth System Sciences 17: 1205–1215.CrossRef Tamea, S., P. Allamano, J. Carr, P. Claps, F. Laio, and L. Ridolfi. 2013. Local and global perspectives on the virtual water trade. Hydrology and Earth System Sciences 17: 1205–1215.CrossRef
Zurück zum Zitat Tamea, S., J.A. Carr, F. Laio, and L. Ridolfi. 2014. Drivers of the virtual water trade. Water Resources Research 50: 17–28.CrossRef Tamea, S., J.A. Carr, F. Laio, and L. Ridolfi. 2014. Drivers of the virtual water trade. Water Resources Research 50: 17–28.CrossRef
Zurück zum Zitat Tejedor, A., A. Longjas, I. Zaliapin, and E. Foufoula-Georgiou. 2015a. Delta channel networks: 1. A graph-theoretic approach for studying connectivity and steady state transport on deltaic surfaces. Water Resources Research 51: 4019–4045.CrossRef Tejedor, A., A. Longjas, I. Zaliapin, and E. Foufoula-Georgiou. 2015a. Delta channel networks: 1. A graph-theoretic approach for studying connectivity and steady state transport on deltaic surfaces. Water Resources Research 51: 4019–4045.CrossRef
Zurück zum Zitat ———. 2015b. Delta channel networks: 2. Metrics of topologic and dynamic complexity for delta comparison, physical inference, and vulnerability assessment. Water Resources Research 51: 3998–4018.CrossRef ———. 2015b. Delta channel networks: 2. Metrics of topologic and dynamic complexity for delta comparison, physical inference, and vulnerability assessment. Water Resources Research 51: 3998–4018.CrossRef
Zurück zum Zitat Tejedor, A., A. Longjas, R. Caldwell, D.A. Edmonds, I. Zaliapin, and E. Foufoula-Georgiou. 2016. Quantifying the signature of sediment composition on the topologic and dynamic complexity of river delta networks and inferences toward delta classification. Geophysical Research Letters 43: 3280–3287.CrossRef Tejedor, A., A. Longjas, R. Caldwell, D.A. Edmonds, I. Zaliapin, and E. Foufoula-Georgiou. 2016. Quantifying the signature of sediment composition on the topologic and dynamic complexity of river delta networks and inferences toward delta classification. Geophysical Research Letters 43: 3280–3287.CrossRef
Zurück zum Zitat Tokunaga, E. 1978. Consideration on the composition of drainage networks and their evolution. Department of Geography/Tokyo Metropolitan University 13: 1–27. Tokunaga, E. 1978. Consideration on the composition of drainage networks and their evolution. Department of Geography/Tokyo Metropolitan University 13: 1–27.
Zurück zum Zitat Tsonis, A.A., and P.J. Roebber. 2004. The architecture of the climate network. Physica A 333: 497–504.CrossRef Tsonis, A.A., and P.J. Roebber. 2004. The architecture of the climate network. Physica A 333: 497–504.CrossRef
Zurück zum Zitat Tsonis, A.A., and K.L. Swanson. 2008. Topology and predictability of El Niño and La Niña networks. Physical Review Letters 100: 228502.CrossRef Tsonis, A.A., and K.L. Swanson. 2008. Topology and predictability of El Niño and La Niña networks. Physical Review Letters 100: 228502.CrossRef
Zurück zum Zitat Tsonis, A.A., K.L. Swanson, and P.J. Roebber. 2006. What do networks have to do with climate? Bulletin of the American Meteorological Society 87 (5): 585–595.CrossRef Tsonis, A.A., K.L. Swanson, and P.J. Roebber. 2006. What do networks have to do with climate? Bulletin of the American Meteorological Society 87 (5): 585–595.CrossRef
Zurück zum Zitat Tsonis, A.A., K.L. Swanson, and G. Wang. 2008. Estimating the clustering coefficient in scale-free networks on lattices with local spatial correlation structure. Physica A 387: 5287–5294.CrossRef Tsonis, A.A., K.L. Swanson, and G. Wang. 2008. Estimating the clustering coefficient in scale-free networks on lattices with local spatial correlation structure. Physica A 387: 5287–5294.CrossRef
Zurück zum Zitat Tsonis, A.A., G. Wang, K.L. Swanson, F.A. Rodrigues, and L.F. Costa. 2011. Community structure and dynamics in climate networks. Climate Dynamics 37: 933–940.CrossRef Tsonis, A.A., G. Wang, K.L. Swanson, F.A. Rodrigues, and L.F. Costa. 2011. Community structure and dynamics in climate networks. Climate Dynamics 37: 933–940.CrossRef
Zurück zum Zitat Wasserman, S., and K. Faust. 1994. Social network analysis. Cambridge: Cambridge University Press.CrossRef Wasserman, S., and K. Faust. 1994. Social network analysis. Cambridge: Cambridge University Press.CrossRef
Zurück zum Zitat Watts, D.J. 1999. Small worlds: the dynamics of networks between order and randomness. Princeton: Princeton University Press. Watts, D.J. 1999. Small worlds: the dynamics of networks between order and randomness. Princeton: Princeton University Press.
Zurück zum Zitat Watts, D.J., and S.H. Strogatz. 1998. Collective dynamics of ‘small-world’ networks. Nature 393: 440–442.CrossRef Watts, D.J., and S.H. Strogatz. 1998. Collective dynamics of ‘small-world’ networks. Nature 393: 440–442.CrossRef
Zurück zum Zitat Werner, C. 1982. Analysis of length distribution of drainage basin parameter. Water Resources Research 18 (4): 997–1005.CrossRef Werner, C. 1982. Analysis of length distribution of drainage basin parameter. Water Resources Research 18 (4): 997–1005.CrossRef
Zurück zum Zitat Yamasaki, K., A. Gozolchiani, and S. Havlin. 2008. Climate networks around the globe are significantly affected by El Niño. Physical Review Letters 100: 228501.CrossRef Yamasaki, K., A. Gozolchiani, and S. Havlin. 2008. Climate networks around the globe are significantly affected by El Niño. Physical Review Letters 100: 228501.CrossRef
Zurück zum Zitat Young, P.C., and M. Ratto. 2009. A unified approach to environmental systems modeling. Stochastic Environmental Research and Risk Assessment 23: 1037–1057.CrossRef Young, P.C., and M. Ratto. 2009. A unified approach to environmental systems modeling. Stochastic Environmental Research and Risk Assessment 23: 1037–1057.CrossRef
Metadaten
Titel
Complex Networks and Hydrologic Applications
verfasst von
Bellie Sivakumar
Carlos E. Puente
Mahesh L. Maskey
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-58895-7_26