Skip to main content
Erschienen in: Journal of Coatings Technology and Research 2/2019

23.07.2018

Composite PCL/HA/simvastatin electrospun nanofiber coating on biodegradable Mg alloy for orthopedic implant application

verfasst von: Abdelrahman I. Rezk, Hamouda M. Mousa, Joshua Lee, Chan Hee Park, Cheol Sang Kim

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, magnesium (Mg) and its alloys have attracted more attention because of their biodegradability and fascinating mechanical properties in the medical field. However, their low corrosion resistance and high degradability in the body have a great effect on mechanical stability and cytocompatibility, which hinders its clinical applications. Therefore, here we introduce a bifunctional composite coating composed of polycaprolactone and synthesized hydroxyapatite nanoparticles (HA-NPs) loaded with simvastatin deposited on the AZ31 alloy via electrospinning technique. The synthesized HA-NPs and composite nanofibers layer were characterized using TEM, FE-SEM, FTIR, and XRD to understand the physiochemical properties of the composite nanofibers compared to pristine polymer and bare alloy. Corrosion resistance was evaluated electrochemically using potentiodynamic polarization and EIS measurements, and biodegradability was evaluated in terms of pH and Mg ions release in SBF solution. The as-prepared coating was found to retard the corrosion and increased the osteocompatibility as resulted in cell culture test, a higher cell attachment and proliferation on the implant biointerface, in addition to releasing simvastatin in a controlled platform.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Czerwinski, F, “Controlling the Ignition and Flammability of Magnesium for Aerospace Applications.” Corros. Sci., 86 1–16 (2014)CrossRef Czerwinski, F, “Controlling the Ignition and Flammability of Magnesium for Aerospace Applications.” Corros. Sci., 86 1–16 (2014)CrossRef
2.
Zurück zum Zitat Kulekci, MK, “Magnesium and its Alloys Applications in Automotive Industry.” Int. J. Adv. Manuf. Technol., 39 (9) 851–865 (2008)CrossRef Kulekci, MK, “Magnesium and its Alloys Applications in Automotive Industry.” Int. J. Adv. Manuf. Technol., 39 (9) 851–865 (2008)CrossRef
3.
Zurück zum Zitat Hu, BH, Tong, KK, Niu, XP, Pinwill, I, “Design and Optimisation of Runner and Gating Systems for the Die Casting of Thin-Walled Magnesium Telecommunication Parts through Numerical Simulation.” J. Mater. Process. Technol., 105 (1) 128–133 (2000) Hu, BH, Tong, KK, Niu, XP, Pinwill, I, “Design and Optimisation of Runner and Gating Systems for the Die Casting of Thin-Walled Magnesium Telecommunication Parts through Numerical Simulation.” J. Mater. Process. Technol., 105 (1) 128–133 (2000)
4.
Zurück zum Zitat Waizy, H, Seitz, J-M, Reifenrath, J, Weizbauer, A, Bach, F-W, Meyer-Lindenberg, A, Denkena, B, Windhagen, H, “Biodegradable Magnesium Implants for Orthopedic Applications.” J. Mater. Sci., 48 (1) 39–50 (2013)CrossRef Waizy, H, Seitz, J-M, Reifenrath, J, Weizbauer, A, Bach, F-W, Meyer-Lindenberg, A, Denkena, B, Windhagen, H, “Biodegradable Magnesium Implants for Orthopedic Applications.” J. Mater. Sci., 48 (1) 39–50 (2013)CrossRef
5.
Zurück zum Zitat Mousa, HM, Hussein, KH, Woo, HM, Park, CH, Kim, CS, “One-Step Anodization Deposition of Anticorrosive Bioceramic Compounds on AZ31B Magnesium Alloy for Biomedical Application.” Ceram. Int., 41 (9, Part A) 10861–10870 (2015)CrossRef Mousa, HM, Hussein, KH, Woo, HM, Park, CH, Kim, CS, “One-Step Anodization Deposition of Anticorrosive Bioceramic Compounds on AZ31B Magnesium Alloy for Biomedical Application.” Ceram. Int., 41 (9, Part A) 10861–10870 (2015)CrossRef
6.
Zurück zum Zitat Mordike, BL, Ebert, T, “Magnesium: Properties—Applications—Potential.” Mater. Sci. Eng. A, 302 (1) 37–45 (2001)CrossRef Mordike, BL, Ebert, T, “Magnesium: Properties—Applications—Potential.” Mater. Sci. Eng. A, 302 (1) 37–45 (2001)CrossRef
7.
Zurück zum Zitat Kotoka, R, Yamoah, NK, Mensah-Darkwa, K, Moses, T, Kumar, D, “Electrochemical Corrosion Behavior of Silver Doped Tricalcium Phosphate Coatings on Magnesium for Biomedical Application.” Surf. Coat. Technol., 292 99–109 (2016)CrossRef Kotoka, R, Yamoah, NK, Mensah-Darkwa, K, Moses, T, Kumar, D, “Electrochemical Corrosion Behavior of Silver Doped Tricalcium Phosphate Coatings on Magnesium for Biomedical Application.” Surf. Coat. Technol., 292 99–109 (2016)CrossRef
8.
Zurück zum Zitat Zhao, MJ, Cai, C, Wang, L, Zhang, Z, Zhang, JQ, “Effect of Zinc Immersion Pretreatment on the Electro-Deposition of Ni onto AZ91D Magnesium Alloy.” Surf. Coat. Technol., 205 (7) 2160–2166 (2010)CrossRef Zhao, MJ, Cai, C, Wang, L, Zhang, Z, Zhang, JQ, “Effect of Zinc Immersion Pretreatment on the Electro-Deposition of Ni onto AZ91D Magnesium Alloy.” Surf. Coat. Technol., 205 (7) 2160–2166 (2010)CrossRef
9.
Zurück zum Zitat Mousa, HM, Hussein, KH, Pant, HR, Woo, HM, Park, CH, Kim, CS, “In Vitro Degradation Behavior and Cytocompatibility of a Bioceramic Anodization Films on the Biodegradable Magnesium Alloy.” Colloids Surf. A, 488 82–92 (2016)CrossRef Mousa, HM, Hussein, KH, Pant, HR, Woo, HM, Park, CH, Kim, CS, “In Vitro Degradation Behavior and Cytocompatibility of a Bioceramic Anodization Films on the Biodegradable Magnesium Alloy.” Colloids Surf. A, 488 82–92 (2016)CrossRef
10.
Zurück zum Zitat Xue, D, Yun, Y, Schulz, MJ, Shanov, V, “Corrosion protction of biodgradable Magnesium Implants using Anodization.” Mater. Sci. Eng. C, 31 (2) 215–223 (2011)CrossRef Xue, D, Yun, Y, Schulz, MJ, Shanov, V, “Corrosion protction of biodgradable Magnesium Implants using Anodization.” Mater. Sci. Eng. C, 31 (2) 215–223 (2011)CrossRef
11.
Zurück zum Zitat Mousa, HM, Park, CH, Kim, CS, Surface Modification of Magnesium and its Alloys Using Anodization for Orthopedic Implant Application. Magnesium Alloys, InTech (2017)CrossRef Mousa, HM, Park, CH, Kim, CS, Surface Modification of Magnesium and its Alloys Using Anodization for Orthopedic Implant Application. Magnesium Alloys, InTech (2017)CrossRef
12.
Zurück zum Zitat Luo, X, Cui, XT, “Electrochemical Deposition of Conducting Polymer Coatings on Magnesium Surfaces in Ionic Liquid.” Acta Biomater., 7 (1) 441–446 (2011)CrossRef Luo, X, Cui, XT, “Electrochemical Deposition of Conducting Polymer Coatings on Magnesium Surfaces in Ionic Liquid.” Acta Biomater., 7 (1) 441–446 (2011)CrossRef
13.
Zurück zum Zitat Wong, HM, Yeung, KWK, Lam, KO, Tam, V, Chu, PK, Luk, KDK, Cheung, KMC, “A Biodegradable Polymer-Based Coating to Control the Performance of Magnesium Alloy Orthopaedic Implants.” Biomaterials, 31 (8) 2084–2096 (2010)CrossRef Wong, HM, Yeung, KWK, Lam, KO, Tam, V, Chu, PK, Luk, KDK, Cheung, KMC, “A Biodegradable Polymer-Based Coating to Control the Performance of Magnesium Alloy Orthopaedic Implants.” Biomaterials, 31 (8) 2084–2096 (2010)CrossRef
14.
Zurück zum Zitat Staiger, MP, Pietak, AM, Huadmai, J, Dias, G, “Magnesium and Its Alloys as Orthopedic Biomaterials: A Review.” Biomaterials, 27 (9) 1728–1734 (2006)CrossRef Staiger, MP, Pietak, AM, Huadmai, J, Dias, G, “Magnesium and Its Alloys as Orthopedic Biomaterials: A Review.” Biomaterials, 27 (9) 1728–1734 (2006)CrossRef
15.
Zurück zum Zitat Hanas, T, Sampath Kumar, TS, Perumal, G, Doble, M, “Tailoring Degradation of AZ31 Alloy by Surface Pre-Treatment and Electrospun PCL Fibrous Coating.” Mater. Sci. Eng. C, 65 43–50 (2016)CrossRef Hanas, T, Sampath Kumar, TS, Perumal, G, Doble, M, “Tailoring Degradation of AZ31 Alloy by Surface Pre-Treatment and Electrospun PCL Fibrous Coating.” Mater. Sci. Eng. C, 65 43–50 (2016)CrossRef
16.
Zurück zum Zitat Soujanya, GK, Hanas, T, Chakrapani, VY, Sunil, BR, Kumar, TSS, “Electrospun Nanofibrous Polymer Coated Magnesium Alloy for Biodegradable Implant Applications.” Proc. Mater. Sci., 5 817–823 (2014)CrossRef Soujanya, GK, Hanas, T, Chakrapani, VY, Sunil, BR, Kumar, TSS, “Electrospun Nanofibrous Polymer Coated Magnesium Alloy for Biodegradable Implant Applications.” Proc. Mater. Sci., 5 817–823 (2014)CrossRef
17.
Zurück zum Zitat Kim, J, Mousa, HM, Park, CH, Kim, CS, “Enhanced Corrosion Resistance and Biocompatibility of AZ31 Mg Alloy using PCL/ZnO NPs via Electrospinning.” Appl. Surf. Sci., 396 249–258 (2017)CrossRef Kim, J, Mousa, HM, Park, CH, Kim, CS, “Enhanced Corrosion Resistance and Biocompatibility of AZ31 Mg Alloy using PCL/ZnO NPs via Electrospinning.” Appl. Surf. Sci., 396 249–258 (2017)CrossRef
18.
Zurück zum Zitat Yasin, AS, Mohamed, IMA, Mousa, HM, Park, CH, Kim, CS, “Facile Synthesis of TiO2/ZrO2 Nanofibers/Nitrogen Co-Doped Activated Carbon to Enhance the Desalination and Bacterial Inactivation via Capacitive Deionization.” Sci. Rep., 8 (1) 541 (2018)CrossRef Yasin, AS, Mohamed, IMA, Mousa, HM, Park, CH, Kim, CS, “Facile Synthesis of TiO2/ZrO2 Nanofibers/Nitrogen Co-Doped Activated Carbon to Enhance the Desalination and Bacterial Inactivation via Capacitive Deionization.” Sci. Rep., 8 (1) 541 (2018)CrossRef
19.
Zurück zum Zitat Jose, MV, Thomas, V, Johnson, KT, Dean, DR, Nyairo, E, “Aligned PLGA/HA Nanofibrous Nanocomposite Scaffolds for Bone Tissue Engineering.” Acta Biomater., 5 (1) 305–315 (2009)CrossRef Jose, MV, Thomas, V, Johnson, KT, Dean, DR, Nyairo, E, “Aligned PLGA/HA Nanofibrous Nanocomposite Scaffolds for Bone Tissue Engineering.” Acta Biomater., 5 (1) 305–315 (2009)CrossRef
20.
Zurück zum Zitat Mousa, HM, Abdal-hay, A, Bartnikowski, M, Mohamed, IMA, Yasin, AS, Ivanovski, S, Park, CH, Kim, CS, “A Multifunctional Zinc Oxide/Poly(Lactic Acid) Nanocomposite Layer Coated on Magnesium Alloys for Controlled Degradation and Antibacterial Function.” ACS Biomater. Sci. Eng., 4 (6) 2169–2180 (2018)CrossRef Mousa, HM, Abdal-hay, A, Bartnikowski, M, Mohamed, IMA, Yasin, AS, Ivanovski, S, Park, CH, Kim, CS, “A Multifunctional Zinc Oxide/Poly(Lactic Acid) Nanocomposite Layer Coated on Magnesium Alloys for Controlled Degradation and Antibacterial Function.” ACS Biomater. Sci. Eng., 4 (6) 2169–2180 (2018)CrossRef
21.
Zurück zum Zitat Kim, H-W, Lee, H-H, Chun, G-S, “Bioactivity and Osteoblast Responses of Novel Biomedical Nanocomposites of Bioactive Glass Nanofiber Filled Poly(Lactic Acid).” J. Biomed. Mater. Res. Part A, 85A (3) 651–663 (2008)CrossRef Kim, H-W, Lee, H-H, Chun, G-S, “Bioactivity and Osteoblast Responses of Novel Biomedical Nanocomposites of Bioactive Glass Nanofiber Filled Poly(Lactic Acid).” J. Biomed. Mater. Res. Part A, 85A (3) 651–663 (2008)CrossRef
22.
Zurück zum Zitat Bianco, A, Di Federico, E, Moscatelli, I, Camaioni, A, Armentano, I, Campagnolo, L, Dottori, M, Kenny, JM, Siracusa, G, Gusmano, G, “Electrospun Poly(ε-caprolactone)/Ca-Deficient Hydroxyapatite nanohybrids: Microstructure, Mechanical Properties and Cell Response by Murine Embryonic Stem Cells.” Mater. Sci. Eng. C, 29 (6) 2063–2071 (2009)CrossRef Bianco, A, Di Federico, E, Moscatelli, I, Camaioni, A, Armentano, I, Campagnolo, L, Dottori, M, Kenny, JM, Siracusa, G, Gusmano, G, “Electrospun Poly(ε-caprolactone)/Ca-Deficient Hydroxyapatite nanohybrids: Microstructure, Mechanical Properties and Cell Response by Murine Embryonic Stem Cells.” Mater. Sci. Eng. C, 29 (6) 2063–2071 (2009)CrossRef
23.
Zurück zum Zitat Fabbri, P, Bondioli, F, Messori, M, Bartoli, C, Dinucci, D, Chiellini, F, “Porous Scaffolds of Polycaprolactone Reinforced with In Situ Generated Hydroxyapatite for Bone Tissue Engineering.” J. Mater. Sci. Mater. Med., 21 (1) 343–351 (2010)CrossRef Fabbri, P, Bondioli, F, Messori, M, Bartoli, C, Dinucci, D, Chiellini, F, “Porous Scaffolds of Polycaprolactone Reinforced with In Situ Generated Hydroxyapatite for Bone Tissue Engineering.” J. Mater. Sci. Mater. Med., 21 (1) 343–351 (2010)CrossRef
24.
Zurück zum Zitat Tian, P, Xu, D, Liu, X, “Mussel-Inspired Functionalization of PEO/PCL Composite Coating on a Biodegradable AZ31 Magnesium Alloy.” Colloids Surf. B, 141 327–337 (2016)CrossRef Tian, P, Xu, D, Liu, X, “Mussel-Inspired Functionalization of PEO/PCL Composite Coating on a Biodegradable AZ31 Magnesium Alloy.” Colloids Surf. B, 141 327–337 (2016)CrossRef
25.
Zurück zum Zitat Bakhsheshi-Rad, HR, Hamzah, E, Kasiri-Asgarani, M, Jabbarzare, S, Iqbal, N, Abdul Kadir, MR, “Deposition of Nanostructured Fluorine-Doped Hydroxyapatite–Polycaprolactone Duplex Coating to Enhance the Mechanical Properties and Corrosion Resistance of Mg Alloy for Biomedical Applications.” Mater. Sci. Eng. C, 60 526–537 (2016)CrossRef Bakhsheshi-Rad, HR, Hamzah, E, Kasiri-Asgarani, M, Jabbarzare, S, Iqbal, N, Abdul Kadir, MR, “Deposition of Nanostructured Fluorine-Doped Hydroxyapatite–Polycaprolactone Duplex Coating to Enhance the Mechanical Properties and Corrosion Resistance of Mg Alloy for Biomedical Applications.” Mater. Sci. Eng. C, 60 526–537 (2016)CrossRef
26.
Zurück zum Zitat Zomorodian, A, Santos, C, Carmezim, MJ, Silva, TME, Fernandes, JCS, Montemor, MF, “ ‘In-Vitro’ Corrosion Behaviour of the Magnesium Alloy with Al and Zn (AZ31) Protected with a Biodegradable Polycaprolactone Coating Loaded with Hydroxyapatite and Cephalexin.” Electrochim. Acta, 179 431–440 (2015)CrossRef Zomorodian, A, Santos, C, Carmezim, MJ, Silva, TME, Fernandes, JCS, Montemor, MF, “ ‘In-Vitro’ Corrosion Behaviour of the Magnesium Alloy with Al and Zn (AZ31) Protected with a Biodegradable Polycaprolactone Coating Loaded with Hydroxyapatite and Cephalexin.” Electrochim. Acta, 179 431–440 (2015)CrossRef
27.
Zurück zum Zitat Mousa, HM, Tiwari, AP, Kim, J, Adhikari, SP, Park, CH, Kim, CS, “A Novel In Situ Deposition of Hydroxyapatite Nanoplates using Anodization/Hydrothermal Process Onto Magnesium Alloy Surface Towards Third Generation Biomaterials.” Mater. Lett., 164 144–147 (2016)CrossRef Mousa, HM, Tiwari, AP, Kim, J, Adhikari, SP, Park, CH, Kim, CS, “A Novel In Situ Deposition of Hydroxyapatite Nanoplates using Anodization/Hydrothermal Process Onto Magnesium Alloy Surface Towards Third Generation Biomaterials.” Mater. Lett., 164 144–147 (2016)CrossRef
28.
Zurück zum Zitat Abdal-hay, A, Vanegas, P, Hamdy, AS, Engel, FB, Lim, JH, “Preparation and Characterization of Vertically Arrayed Hydroxyapatite Nanoplates on Electrospun Nanofibers for Bone Tissue Engineering.” Chem. Eng. J., 254 612–622 (2014)CrossRef Abdal-hay, A, Vanegas, P, Hamdy, AS, Engel, FB, Lim, JH, “Preparation and Characterization of Vertically Arrayed Hydroxyapatite Nanoplates on Electrospun Nanofibers for Bone Tissue Engineering.” Chem. Eng. J., 254 612–622 (2014)CrossRef
29.
Zurück zum Zitat Shikinami, Y, Okuno, M, “Bioresorbable Devices Made of Forged Composites of Hydroxyapatite (HA) Particles and Poly l-lactide (PLLA). Part II: Practical Properties of Miniscrews and Miniplates.” Biomaterials, 22 (23) 3197–3211 (2001)CrossRef Shikinami, Y, Okuno, M, “Bioresorbable Devices Made of Forged Composites of Hydroxyapatite (HA) Particles and Poly l-lactide (PLLA). Part II: Practical Properties of Miniscrews and Miniplates.” Biomaterials, 22 (23) 3197–3211 (2001)CrossRef
30.
Zurück zum Zitat Fang, R, Zhang, E, Xu, L, Wei, S, “Electrospun PCL/PLA/HA Based Nanofibers as Scaffold for Osteoblast-Like Cells.” J. Nanosci. Nanotechnol., 10 (11) 7747–7751 (2010)CrossRef Fang, R, Zhang, E, Xu, L, Wei, S, “Electrospun PCL/PLA/HA Based Nanofibers as Scaffold for Osteoblast-Like Cells.” J. Nanosci. Nanotechnol., 10 (11) 7747–7751 (2010)CrossRef
31.
Zurück zum Zitat Dong, H, Li, Q, Tan, C, Bai, N, Cai, P, “Bi-Directional Controlled Release of Ibuprofen and Mg2 + from Magnesium Alloys Coated by Multifunctional Composite.” Mater. Sci. Eng. C, 68 512–518 (2016)CrossRef Dong, H, Li, Q, Tan, C, Bai, N, Cai, P, “Bi-Directional Controlled Release of Ibuprofen and Mg2 + from Magnesium Alloys Coated by Multifunctional Composite.” Mater. Sci. Eng. C, 68 512–518 (2016)CrossRef
32.
Zurück zum Zitat Yoo, HS, Kim, TG, Park, TG, “Surface-Functionalized Electrospun Nanofibers for Tissue Engineering and Drug Delivery.” Adv. Drug Deliv. Rev., 61 (12) 1033–1042 (2009)CrossRef Yoo, HS, Kim, TG, Park, TG, “Surface-Functionalized Electrospun Nanofibers for Tissue Engineering and Drug Delivery.” Adv. Drug Deliv. Rev., 61 (12) 1033–1042 (2009)CrossRef
33.
Zurück zum Zitat Rezk, AI, Rajan Unnithan, A, Hee Park, C, Sang Kim, C, “Rational Design of Bone Extracellular Matrix Mimicking Tri- Layered Composite Nanofibers for Bone Tissue Regeneration.” Chem. Eng. J., 350 812 (2018)CrossRef Rezk, AI, Rajan Unnithan, A, Hee Park, C, Sang Kim, C, “Rational Design of Bone Extracellular Matrix Mimicking Tri- Layered Composite Nanofibers for Bone Tissue Regeneration.” Chem. Eng. J., 350 812 (2018)CrossRef
34.
Zurück zum Zitat Thylin, MR, McConnell, JC, Schmid, MJ, Reckling, RR, Ojha, J, Bhattacharyya, I, Marx, DB, Reinhardt, RA, “Effects of Simvastatin Gels on Murine Calvarial Bone.” J. Periodontol., 73 (10) 1141–1148 (2002)CrossRef Thylin, MR, McConnell, JC, Schmid, MJ, Reckling, RR, Ojha, J, Bhattacharyya, I, Marx, DB, Reinhardt, RA, “Effects of Simvastatin Gels on Murine Calvarial Bone.” J. Periodontol., 73 (10) 1141–1148 (2002)CrossRef
35.
Zurück zum Zitat Tang, ZG, Black, RA, Curran, JM, Hunt, JA, Rhodes, NP, Williams, DF, “Surface Properties and Biocompatibility of Solvent-Cast Poly[ε-Caprozlactone] Films.” Biomaterials, 25 (19) 4741–4748 (2004)CrossRef Tang, ZG, Black, RA, Curran, JM, Hunt, JA, Rhodes, NP, Williams, DF, “Surface Properties and Biocompatibility of Solvent-Cast Poly[ε-Caprozlactone] Films.” Biomaterials, 25 (19) 4741–4748 (2004)CrossRef
36.
Zurück zum Zitat Gautam, S, Dinda, AK, Mishra, NC, “Fabrication and Characterization of PCL/Gelatin Composite Nanofibrous Scaffold for Tissue Engineering Applications by Electrospinning Method.” Mater. Sci. Eng. C, 33 (3) 1228–1235 (2013)CrossRef Gautam, S, Dinda, AK, Mishra, NC, “Fabrication and Characterization of PCL/Gelatin Composite Nanofibrous Scaffold for Tissue Engineering Applications by Electrospinning Method.” Mater. Sci. Eng. C, 33 (3) 1228–1235 (2013)CrossRef
37.
Zurück zum Zitat Mousa, HM, Lee, DH, Park, CH, Kim, CS, “A Novel Simple Strategy for In Situ Deposition of Apatite Layer on AZ31B Magnesium Alloy for Bone Tissue Regeneration.” Appl. Surf. Sci., 351 55–65 (2015)CrossRef Mousa, HM, Lee, DH, Park, CH, Kim, CS, “A Novel Simple Strategy for In Situ Deposition of Apatite Layer on AZ31B Magnesium Alloy for Bone Tissue Regeneration.” Appl. Surf. Sci., 351 55–65 (2015)CrossRef
38.
Zurück zum Zitat Kouhi, M, Morshed, M, Varshosaz, J, Fathi, MH, “Poly (ε-Caprolactone) Incorporated Bioactive Glass Nanoparticles and Simvastatin Nanocomposite Nanofibers: Preparation, Characterization and In Vitro Drug Release for Bone Regeneration Applications.” Chem. Eng. J., 228 1057–1065 (2013)CrossRef Kouhi, M, Morshed, M, Varshosaz, J, Fathi, MH, “Poly (ε-Caprolactone) Incorporated Bioactive Glass Nanoparticles and Simvastatin Nanocomposite Nanofibers: Preparation, Characterization and In Vitro Drug Release for Bone Regeneration Applications.” Chem. Eng. J., 228 1057–1065 (2013)CrossRef
39.
Zurück zum Zitat Rehman, I, Bonfield, W, “Characterization of Hydroxyapatite and Carbonated Apatite by Photo Acoustic FTIR Spectroscopy.” J. Mater. Sci. Mater. Med., 8 (1) 1–4 (1997)CrossRef Rehman, I, Bonfield, W, “Characterization of Hydroxyapatite and Carbonated Apatite by Photo Acoustic FTIR Spectroscopy.” J. Mater. Sci. Mater. Med., 8 (1) 1–4 (1997)CrossRef
40.
Zurück zum Zitat Fujihara, K, Kotaki, M, Ramakrishna, S, “Guided Bone Regeneration Membrane Made of Polycaprolactone/Calcium Carbonate Composite Nano-fibers.” Biomaterials, 26 (19) 4139–4147 (2005)CrossRef Fujihara, K, Kotaki, M, Ramakrishna, S, “Guided Bone Regeneration Membrane Made of Polycaprolactone/Calcium Carbonate Composite Nano-fibers.” Biomaterials, 26 (19) 4139–4147 (2005)CrossRef
41.
Zurück zum Zitat Lebourg, M, Suay Antón, J, Gomez Ribelles, JL, “Characterization of Calcium Phosphate Layers Grown on Polycaprolactone for Tissue Engineering Purposes.” Compos. Sci. Technol., 70 (13) 1796–1804 (2010)CrossRef Lebourg, M, Suay Antón, J, Gomez Ribelles, JL, “Characterization of Calcium Phosphate Layers Grown on Polycaprolactone for Tissue Engineering Purposes.” Compos. Sci. Technol., 70 (13) 1796–1804 (2010)CrossRef
42.
Zurück zum Zitat Mousa, HM, Hussein, KH, Raslan, AA, Lee, J, Woo, HM, Park, CH, Kim, CS, “Amorphous Apatite Thin Film Formation on a Biodegradable Mg Alloy for Bone Regeneration: Strategy, Characterization, Biodegradation, and In Vitro Cell Study.” RSC Adv., 6 (27) 22563–22574 (2016)CrossRef Mousa, HM, Hussein, KH, Raslan, AA, Lee, J, Woo, HM, Park, CH, Kim, CS, “Amorphous Apatite Thin Film Formation on a Biodegradable Mg Alloy for Bone Regeneration: Strategy, Characterization, Biodegradation, and In Vitro Cell Study.” RSC Adv., 6 (27) 22563–22574 (2016)CrossRef
43.
Zurück zum Zitat Gu, Y, Bandopadhyay, S, Chen, C-F, Guo, Y, Ning, C, “Effect of Oxidation Time on the Corrosion Behavior of Micro-Arc Oxidation Produced AZ31 Magnesium Alloys in Simulated Body Fluid.” J. Alloy. Compd., 543 109–117 (2012)CrossRef Gu, Y, Bandopadhyay, S, Chen, C-F, Guo, Y, Ning, C, “Effect of Oxidation Time on the Corrosion Behavior of Micro-Arc Oxidation Produced AZ31 Magnesium Alloys in Simulated Body Fluid.” J. Alloy. Compd., 543 109–117 (2012)CrossRef
44.
Zurück zum Zitat Wen, C, Guan, S, Peng, L, Ren, C, Wang, X, Hu, Z, “Characterization and Degradation Behavior of AZ31 Alloy Surface Modified by Bone-Like Hydroxyapatite for Implant Applications.” Appl. Surf. Sci., 255 (13) 6433–6438 (2009)CrossRef Wen, C, Guan, S, Peng, L, Ren, C, Wang, X, Hu, Z, “Characterization and Degradation Behavior of AZ31 Alloy Surface Modified by Bone-Like Hydroxyapatite for Implant Applications.” Appl. Surf. Sci., 255 (13) 6433–6438 (2009)CrossRef
45.
Zurück zum Zitat Ayukawa, Y, Yasukawa, E, Moriyama, Y, Ogino, Y, Wada, H, Atsuta, I, Koyano, K, “Local Application of Statin Promotes Bone Repair Through the Suppression of Osteoclasts and the Enhancement of Osteoblasts at Bone-Healing Sites in Rats.” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 107 (3) 336–342 (2009)CrossRef Ayukawa, Y, Yasukawa, E, Moriyama, Y, Ogino, Y, Wada, H, Atsuta, I, Koyano, K, “Local Application of Statin Promotes Bone Repair Through the Suppression of Osteoclasts and the Enhancement of Osteoblasts at Bone-Healing Sites in Rats.” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 107 (3) 336–342 (2009)CrossRef
Metadaten
Titel
Composite PCL/HA/simvastatin electrospun nanofiber coating on biodegradable Mg alloy for orthopedic implant application
verfasst von
Abdelrahman I. Rezk
Hamouda M. Mousa
Joshua Lee
Chan Hee Park
Cheol Sang Kim
Publikationsdatum
23.07.2018
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 2/2019
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-018-0126-8

Weitere Artikel der Ausgabe 2/2019

Journal of Coatings Technology and Research 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.