Skip to main content

2019 | OriginalPaper | Buchkapitel

16. Composites Containing Marine Biomaterials for Bone Tissue Repair

verfasst von : K. Balagangadharan, Harsha Rao, PranavKumar Shadamarshan, Harini Balaji, N. Selvamurugan

Erschienen in: Marine-Derived Biomaterials for Tissue Engineering Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, a striking development has been achieved in marine biomaterials for bone tissue repair. Marine sources have proven to be non-polluting and versatile for biomedical applications. Bone tissue engineering is a promising alternative for treating bone ailments caused due to trauma and surgical intrusions. Biocomposites comprise of biodegradable and biocompatible materials and mimic the architecture of bone and support regeneration. Significant sources of marine biomaterials are fish, invertebrates, fungi, corals, etc. Bone defects are treated using marine biocomposite polymers such as chitosan, collagen, alginate, gelatin, and ceramics. Chitosan is anti-microbial and bioactive; hydroxyapatite and collagen are significant constituents of bone, and alginate boosts mechanical strength and structural integrity of biocomposites. This chapter accounts for the source and types of biomaterials from marine fauna, the fabrication of biomaterials as scaffolds and their biological activity in enhancing bone repair in vitro and in vivo.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554CrossRef Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554CrossRef
2.
Zurück zum Zitat Boskey AL (2015) Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep 4:710CrossRef Boskey AL (2015) Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep 4:710CrossRef
3.
Zurück zum Zitat Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408 Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408
4.
Zurück zum Zitat Pisani P, Renna MD, Conversano F et al (2016) Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop 7:171–181CrossRef Pisani P, Renna MD, Conversano F et al (2016) Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop 7:171–181CrossRef
5.
Zurück zum Zitat Fardellone P, Séjourné A, Paccou J et al (2014) Bone remodelling markers in rheumatoid arthritis. Mediators Inflamm 2014:484280CrossRef Fardellone P, Séjourné A, Paccou J et al (2014) Bone remodelling markers in rheumatoid arthritis. Mediators Inflamm 2014:484280CrossRef
6.
Zurück zum Zitat Bianco P (2014) “Mesenchymal” stem cells. Annu Rev Cell Dev Biol 30:677–704CrossRef Bianco P (2014) “Mesenchymal” stem cells. Annu Rev Cell Dev Biol 30:677–704CrossRef
7.
Zurück zum Zitat Schaffler MB, Cheung WY, Majeska R et al (2014) Osteocytes: master orchestrators of bone. Calcif Tissue Int 94:5–24CrossRef Schaffler MB, Cheung WY, Majeska R et al (2014) Osteocytes: master orchestrators of bone. Calcif Tissue Int 94:5–24CrossRef
8.
Zurück zum Zitat Dimitriou R, Jones E, McGonagle D et al (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66CrossRef Dimitriou R, Jones E, McGonagle D et al (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66CrossRef
9.
Zurück zum Zitat Lerner UH (2012) Osteoblasts, osteoclasts, and osteocytes: unveiling their intimate-associated responses to applied orthodontic forces. Semin Orthod 18:237–248CrossRef Lerner UH (2012) Osteoblasts, osteoclasts, and osteocytes: unveiling their intimate-associated responses to applied orthodontic forces. Semin Orthod 18:237–248CrossRef
10.
Zurück zum Zitat Surmenev RA, Surmeneva MA, Ivanova AA (2014) Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—a review. Acta Biomater 10:557–579CrossRef Surmenev RA, Surmeneva MA, Ivanova AA (2014) Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—a review. Acta Biomater 10:557–579CrossRef
11.
Zurück zum Zitat Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15:100–114CrossRef Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15:100–114CrossRef
12.
Zurück zum Zitat Mackie EJ, Ahmed YA, Tatarczuch L et al (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62CrossRef Mackie EJ, Ahmed YA, Tatarczuch L et al (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62CrossRef
13.
Zurück zum Zitat Franz-Odendaal TA (2011) Induction and patterning of intramembranous bone. Front Biosci (Landmark Ed) 16:2734–2746CrossRef Franz-Odendaal TA (2011) Induction and patterning of intramembranous bone. Front Biosci (Landmark Ed) 16:2734–2746CrossRef
14.
Zurück zum Zitat Schlundt C, El Khassawna T, Serra A et al (2018) Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone 106:78–89CrossRef Schlundt C, El Khassawna T, Serra A et al (2018) Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone 106:78–89CrossRef
15.
Zurück zum Zitat Fröhlich M, Grayson WL, Wan LQ et al (2008) Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 3:254–264CrossRef Fröhlich M, Grayson WL, Wan LQ et al (2008) Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 3:254–264CrossRef
16.
Zurück zum Zitat Saranya N, Moorthi A, Saravanan S et al (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 48:234–238CrossRef Saranya N, Moorthi A, Saravanan S et al (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 48:234–238CrossRef
17.
Zurück zum Zitat Swetha M, Sahithi K, Moorthi A et al (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12:167–172CrossRef Swetha M, Sahithi K, Moorthi A et al (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12:167–172CrossRef
18.
Zurück zum Zitat García-Gareta E, Coathup MJ, Blunn GW (2015) Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 81:112–121CrossRef García-Gareta E, Coathup MJ, Blunn GW (2015) Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 81:112–121CrossRef
19.
Zurück zum Zitat Sriram M, Sainitya R, Kalyanaraman V et al (2015) Biomaterials mediated microRNA delivery for bone tissue engineering. Int J Biol Macromol 74:404–412CrossRef Sriram M, Sainitya R, Kalyanaraman V et al (2015) Biomaterials mediated microRNA delivery for bone tissue engineering. Int J Biol Macromol 74:404–412CrossRef
20.
Zurück zum Zitat Saravanan S, Leena RS, Selvamurugan N (2016) Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 93B:1354–1365CrossRef Saravanan S, Leena RS, Selvamurugan N (2016) Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 93B:1354–1365CrossRef
21.
Zurück zum Zitat Balagangadharan K, Dhivya S, Selvamurugan N (2017) Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 104B:1372–1382CrossRef Balagangadharan K, Dhivya S, Selvamurugan N (2017) Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 104B:1372–1382CrossRef
22.
Zurück zum Zitat Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765CrossRef Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765CrossRef
23.
Zurück zum Zitat Pattnaik S, Nethala S, Tripathi A et al (2011) Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Int J Biol Macromol 49:1167–1172CrossRef Pattnaik S, Nethala S, Tripathi A et al (2011) Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Int J Biol Macromol 49:1167–1172CrossRef
24.
Zurück zum Zitat Tripathi A, Saravanan S, Pattnai S et al (2012) Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering. Int J Biol Macromol 50:294–299CrossRef Tripathi A, Saravanan S, Pattnai S et al (2012) Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering. Int J Biol Macromol 50:294–299CrossRef
25.
Zurück zum Zitat Sowjanya JA, Singh J, Mohita T et al (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B Biointerfaces 109:294–300CrossRef Sowjanya JA, Singh J, Mohita T et al (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B Biointerfaces 109:294–300CrossRef
26.
Zurück zum Zitat Fishero BA, Kohli N, Das A et al (2015) Current concepts of bone tissue engineering for craniofacial bone defect repair. Craniomaxillofac Trauma Reconstr 8:23–30 Fishero BA, Kohli N, Das A et al (2015) Current concepts of bone tissue engineering for craniofacial bone defect repair. Craniomaxillofac Trauma Reconstr 8:23–30
27.
Zurück zum Zitat Kumar P, Vinitha B, Fathima G (2013) Bone grafts in dentistry. J Pharm Bioallied Sci 5:S125–S127CrossRef Kumar P, Vinitha B, Fathima G (2013) Bone grafts in dentistry. J Pharm Bioallied Sci 5:S125–S127CrossRef
28.
Zurück zum Zitat Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11:18–25CrossRef Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11:18–25CrossRef
29.
Zurück zum Zitat Sainitya R, Sriram M, Kalyanaraman V et al (2015) Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. Int J Biol Macromol 80:481–488CrossRef Sainitya R, Sriram M, Kalyanaraman V et al (2015) Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. Int J Biol Macromol 80:481–488CrossRef
30.
Zurück zum Zitat Rao SH, Harini B, Shadamarshan RPK et al (2018) Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. Int J Biol Macromol 110:88–96CrossRef Rao SH, Harini B, Shadamarshan RPK et al (2018) Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. Int J Biol Macromol 110:88–96CrossRef
31.
Zurück zum Zitat Srivastava S, Bankar R, Roy P (2013) Assessment of the role of flavonoids for inducing osteoblast differentiation in isolated mouse bone marrow derived mesenchymal stem cells. Phytomedicine 20:683–690CrossRef Srivastava S, Bankar R, Roy P (2013) Assessment of the role of flavonoids for inducing osteoblast differentiation in isolated mouse bone marrow derived mesenchymal stem cells. Phytomedicine 20:683–690CrossRef
32.
Zurück zum Zitat Leena RS, Vairamani M, Selvamurugan N (2017) Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro. Colloids Surf B Biointerfaces 158:308–318CrossRef Leena RS, Vairamani M, Selvamurugan N (2017) Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro. Colloids Surf B Biointerfaces 158:308–318CrossRef
33.
Zurück zum Zitat Preethi Soundarya S, Sanjay V, Haritha Menon A et al (2018) Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. Int J Biol Macromol 110:74–87CrossRef Preethi Soundarya S, Sanjay V, Haritha Menon A et al (2018) Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. Int J Biol Macromol 110:74–87CrossRef
34.
Zurück zum Zitat Aneiros A, Garateix A (2004) Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J Chromatogr B Analyt Technol Biomed Life Sci 803:41–53CrossRef Aneiros A, Garateix A (2004) Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J Chromatogr B Analyt Technol Biomed Life Sci 803:41–53CrossRef
35.
Zurück zum Zitat Ruocco N, Costantini S, Guariniello S et al (2016) Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules 21:E551CrossRef Ruocco N, Costantini S, Guariniello S et al (2016) Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules 21:E551CrossRef
36.
Zurück zum Zitat Wang H, Fu ZM, Han CC (2014) The potential applications of marine bioactives against diabetes and obesity. Am J Marine Sci 2:1–8 Wang H, Fu ZM, Han CC (2014) The potential applications of marine bioactives against diabetes and obesity. Am J Marine Sci 2:1–8
37.
Zurück zum Zitat Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev 17:331–347CrossRef Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev 17:331–347CrossRef
38.
Zurück zum Zitat Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4:411–427 Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4:411–427
39.
Zurück zum Zitat Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226CrossRef Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226CrossRef
41.
Zurück zum Zitat Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174CrossRef Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174CrossRef
42.
Zurück zum Zitat Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469CrossRef Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469CrossRef
43.
Zurück zum Zitat Klokkevold PR, Vandemark L, Kenney EB et al (1996) Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J Periodontol 67:1170–1175CrossRef Klokkevold PR, Vandemark L, Kenney EB et al (1996) Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J Periodontol 67:1170–1175CrossRef
44.
Zurück zum Zitat Seol YJ, Lee JY, Park YJ et al (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26:1037–1041CrossRef Seol YJ, Lee JY, Park YJ et al (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26:1037–1041CrossRef
45.
Zurück zum Zitat Boynueğri D, Ozcan G, Senel S (2009) Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: a pilot study. J Biomed Mater Res B Appl Biomater 90:461–466CrossRef Boynueğri D, Ozcan G, Senel S (2009) Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: a pilot study. J Biomed Mater Res B Appl Biomater 90:461–466CrossRef
46.
Zurück zum Zitat Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering—an overview. Mar Drugs 8:2252–2266CrossRef Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering—an overview. Mar Drugs 8:2252–2266CrossRef
47.
Zurück zum Zitat Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465CrossRef Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465CrossRef
48.
Zurück zum Zitat Ehrlich H (2010) Biological materials of marine origin. Springer, New YorkCrossRef Ehrlich H (2010) Biological materials of marine origin. Springer, New YorkCrossRef
49.
Zurück zum Zitat Gómez-Guillén MC, Turnay J, Fernández-Dıaz MD et al (2002) Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocolloid 16:25–34CrossRef Gómez-Guillén MC, Turnay J, Fernández-Dıaz MD et al (2002) Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocolloid 16:25–34CrossRef
50.
Zurück zum Zitat Venkatesan J, Lowe B, Manivasagan P et al (2015) Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials 8:5426–5439CrossRef Venkatesan J, Lowe B, Manivasagan P et al (2015) Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials 8:5426–5439CrossRef
51.
Zurück zum Zitat Boutinguiza M, Pou J, Comesana R et al (2012) Biological hydroxyapatite obtained from fish bones. Mat Sci Eng C - Mater 32:478–486CrossRef Boutinguiza M, Pou J, Comesana R et al (2012) Biological hydroxyapatite obtained from fish bones. Mat Sci Eng C - Mater 32:478–486CrossRef
52.
Zurück zum Zitat Tripathi G, Basu B (2012) A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations. Ceram Int 38:341–349CrossRef Tripathi G, Basu B (2012) A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations. Ceram Int 38:341–349CrossRef
53.
Zurück zum Zitat Pan LZ, He HW, Yao ZW et al (2010) Preparation and characterization of nano-hydroxy apatite/konjac glucomannan composite scaffolds. J Wuhan Univ Technol Mat Sci Ed 25:484–486CrossRef Pan LZ, He HW, Yao ZW et al (2010) Preparation and characterization of nano-hydroxy apatite/konjac glucomannan composite scaffolds. J Wuhan Univ Technol Mat Sci Ed 25:484–486CrossRef
54.
Zurück zum Zitat Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781CrossRef Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781CrossRef
55.
Zurück zum Zitat Dhivya S, Saravanan S, Sastry TP et al (2015) Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnology 13:40CrossRef Dhivya S, Saravanan S, Sastry TP et al (2015) Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnology 13:40CrossRef
56.
Zurück zum Zitat Badii F, Howell NK (2006) Fish gelatin: structure, gelling properties and interaction with egg albumen proteins. Food Hydrocolloids 20:630–640CrossRef Badii F, Howell NK (2006) Fish gelatin: structure, gelling properties and interaction with egg albumen proteins. Food Hydrocolloids 20:630–640CrossRef
57.
Zurück zum Zitat Saravanan S, Chawla A, Vairamani M et al (2017) Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol 104B:1975–1985CrossRef Saravanan S, Chawla A, Vairamani M et al (2017) Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol 104B:1975–1985CrossRef
58.
Zurück zum Zitat Hoque ME, Nuge T, Yeow TK et al (2015) Gelatin based scaffolds for tissue engineering—a review. Polymer Res J 9:15–32 Hoque ME, Nuge T, Yeow TK et al (2015) Gelatin based scaffolds for tissue engineering—a review. Polymer Res J 9:15–32
59.
Zurück zum Zitat Rhein-Knudsen N, Ale MT, Meyer AS (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13:3340–3359CrossRef Rhein-Knudsen N, Ale MT, Meyer AS (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13:3340–3359CrossRef
60.
Zurück zum Zitat Cardoso MJ, Costa RR, Mano JF (2016) Marine origin polysaccharides in drug delivery systems. Mar Drugs 14:E34CrossRef Cardoso MJ, Costa RR, Mano JF (2016) Marine origin polysaccharides in drug delivery systems. Mar Drugs 14:E34CrossRef
61.
Zurück zum Zitat Venkatesan J, Bhatnagar I, Manivasagan P et al (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281CrossRef Venkatesan J, Bhatnagar I, Manivasagan P et al (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281CrossRef
62.
Zurück zum Zitat Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309CrossRef Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309CrossRef
63.
Zurück zum Zitat Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17:467–479CrossRef Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17:467–479CrossRef
64.
Zurück zum Zitat Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502CrossRef Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502CrossRef
66.
Zurück zum Zitat Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine 8:337–350CrossRef Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine 8:337–350CrossRef
67.
Zurück zum Zitat Subia B, Kundu J, Kundu SC (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. In: Eberli D (ed) Tissue engineering. IntechOpen, London, pp 141–157 Subia B, Kundu J, Kundu SC (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. In: Eberli D (ed) Tissue engineering. IntechOpen, London, pp 141–157
68.
Zurück zum Zitat Sughanthy Siva AP, Ansari MNM (2015) A review on bone scaffold fabrication methods. Int Res J Eng Technol 2:1232–1238 Sughanthy Siva AP, Ansari MNM (2015) A review on bone scaffold fabrication methods. Int Res J Eng Technol 2:1232–1238
69.
Zurück zum Zitat Grey CP (2014) Tissue engineering scaffold fabrication and processing techniques to improve cellular infiltration. Dissertation, Virginia Commonwealth University Grey CP (2014) Tissue engineering scaffold fabrication and processing techniques to improve cellular infiltration. Dissertation, Virginia Commonwealth University
70.
Zurück zum Zitat Shalumon KT, Binulal NS, Selvamurugan N et al (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohyd Polym 77:863–869CrossRef Shalumon KT, Binulal NS, Selvamurugan N et al (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohyd Polym 77:863–869CrossRef
71.
Zurück zum Zitat Binulal NS, Deepthy M, Selvamurugan N et al (2010) Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering–response to osteogenic regulators. Tissue Eng Part A 16:393–404CrossRef Binulal NS, Deepthy M, Selvamurugan N et al (2010) Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering–response to osteogenic regulators. Tissue Eng Part A 16:393–404CrossRef
72.
Zurück zum Zitat Ibrahim HM, El- Zairy EMR (2015) Chitosan as a biomaterial—structure, properties, and electrospun nanofibers. In: Bobbarala V (ed) Concepts, compounds and the alternatives of antibacterials. IntechOpen, London, pp 81–101 Ibrahim HM, El- Zairy EMR (2015) Chitosan as a biomaterial—structure, properties, and electrospun nanofibers. In: Bobbarala V (ed) Concepts, compounds and the alternatives of antibacterials. IntechOpen, London, pp 81–101
73.
Zurück zum Zitat Oftadeh R, Perez-Viloria M, Villa-Camacho JC et al (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 137(1):0109021–01080215CrossRef Oftadeh R, Perez-Viloria M, Villa-Camacho JC et al (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 137(1):0109021–01080215CrossRef
74.
Zurück zum Zitat Peter M, Ganesh N, Selvamurugan N et al (2010) Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohyd Polym 80:687–694CrossRef Peter M, Ganesh N, Selvamurugan N et al (2010) Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohyd Polym 80:687–694CrossRef
75.
Zurück zum Zitat Guo YP, Guan JJ, Yang J et al (2015) Hybrid nanostructured hydroxyapatite-chitosan composite scaffold: bioinspired fabrication, mechanical properties and biological properties. J Mater Chem B 3:4679–4689CrossRef Guo YP, Guan JJ, Yang J et al (2015) Hybrid nanostructured hydroxyapatite-chitosan composite scaffold: bioinspired fabrication, mechanical properties and biological properties. J Mater Chem B 3:4679–4689CrossRef
76.
Zurück zum Zitat Heidari F, Razavi M, Bahrololoom ME et al (2016) Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 65:338–344CrossRef Heidari F, Razavi M, Bahrololoom ME et al (2016) Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 65:338–344CrossRef
77.
Zurück zum Zitat Roy P, Sailaja RR (2015) Chitosan-nanohydroxyapatite composites: mechanical, thermal and bio-compatibility studies. Int J Biol Macromol 73:170–181CrossRef Roy P, Sailaja RR (2015) Chitosan-nanohydroxyapatite composites: mechanical, thermal and bio-compatibility studies. Int J Biol Macromol 73:170–181CrossRef
78.
Zurück zum Zitat Serra IR, Fradique R, Vallejo MC et al (2015) Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Mater Sci Eng C Mater Biol Appl 55:592–604CrossRef Serra IR, Fradique R, Vallejo MC et al (2015) Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Mater Sci Eng C Mater Biol Appl 55:592–604CrossRef
79.
Zurück zum Zitat Kavya KC, Jayakumar R, Nair S et al (2013) Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 59:255–263CrossRef Kavya KC, Jayakumar R, Nair S et al (2013) Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 59:255–263CrossRef
80.
Zurück zum Zitat Lin L, Zhang H, Yao Y et al (2007) Application of image processing and finite element analysis in bionic scaffolds’ design optimizing and fabrication. In: Li K, Li X, Irwin GW, He G (eds) Life system modeling and simulation. LSMS 2007. Lecture notes in computer science, vol 4689. Springer, Heidelberg, pp 136–145 Lin L, Zhang H, Yao Y et al (2007) Application of image processing and finite element analysis in bionic scaffolds’ design optimizing and fabrication. In: Li K, Li X, Irwin GW, He G (eds) Life system modeling and simulation. LSMS 2007. Lecture notes in computer science, vol 4689. Springer, Heidelberg, pp 136–145
81.
Zurück zum Zitat Li Z, Ramay HR, Hauch KD et al (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928CrossRef Li Z, Ramay HR, Hauch KD et al (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928CrossRef
82.
Zurück zum Zitat Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184CrossRef Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184CrossRef
83.
Zurück zum Zitat Li H, Zhou CR, Zhu MY et al (2010) Preparation and characterization of homogeneous hydroxyapatite/chitosan composite scaffolds via in-situ hydration. J Biomater Nanobiotechnol 1:42–49CrossRef Li H, Zhou CR, Zhu MY et al (2010) Preparation and characterization of homogeneous hydroxyapatite/chitosan composite scaffolds via in-situ hydration. J Biomater Nanobiotechnol 1:42–49CrossRef
84.
Zurück zum Zitat Mao J, Zhao L, De Yao K et al (2003) Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res A 64:301–308CrossRef Mao J, Zhao L, De Yao K et al (2003) Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res A 64:301–308CrossRef
85.
Zurück zum Zitat Sharma C, Dinda AK, Potdar PD et al (2016) Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 64:416–427CrossRef Sharma C, Dinda AK, Potdar PD et al (2016) Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 64:416–427CrossRef
86.
Zurück zum Zitat Gaharwar AK, Schexnailder PJ, Kline BP et al (2011) Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomater 7:568–577CrossRef Gaharwar AK, Schexnailder PJ, Kline BP et al (2011) Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomater 7:568–577CrossRef
87.
Zurück zum Zitat Millán JL (2006) Alkaline phosphatases: structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341CrossRef Millán JL (2006) Alkaline phosphatases: structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341CrossRef
88.
Zurück zum Zitat Lima PA, Resende CX, Soares GD et al (2013) Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 33:3389–3395CrossRef Lima PA, Resende CX, Soares GD et al (2013) Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 33:3389–3395CrossRef
89.
Zurück zum Zitat Kumar JP, Lakshmi L, Jyothsna V et al (2014) Synthesis and characterization of diopside particles and their suitability along with chitosan matrix for bone tissue engineering in vitro and in vivo. J Biomed Nanotechnol 10:970–981CrossRef Kumar JP, Lakshmi L, Jyothsna V et al (2014) Synthesis and characterization of diopside particles and their suitability along with chitosan matrix for bone tissue engineering in vitro and in vivo. J Biomed Nanotechnol 10:970–981CrossRef
90.
91.
Zurück zum Zitat Wang X, Yu T, Chen G et al (2017) Preparation and characterization of a chitosan/gelatin/extracellular matrix scaffold and its application in tissue engineering. Tissue Eng Part C Methods 23:169–179CrossRef Wang X, Yu T, Chen G et al (2017) Preparation and characterization of a chitosan/gelatin/extracellular matrix scaffold and its application in tissue engineering. Tissue Eng Part C Methods 23:169–179CrossRef
92.
Zurück zum Zitat Zhang Y, Venugopal JR, El-Turki A et al (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322CrossRef Zhang Y, Venugopal JR, El-Turki A et al (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322CrossRef
93.
Zurück zum Zitat Sajesh KM, Jayakumar R, Nair SV et al (2013) Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering. Int J Biol Macromol 62:465–471CrossRef Sajesh KM, Jayakumar R, Nair SV et al (2013) Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering. Int J Biol Macromol 62:465–471CrossRef
94.
Zurück zum Zitat Vimalraj S, Saravanan S, Vairamani M et al (2016) A combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation. Int J Biol Macromol 93B:1457–1464CrossRef Vimalraj S, Saravanan S, Vairamani M et al (2016) A combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation. Int J Biol Macromol 93B:1457–1464CrossRef
95.
Zurück zum Zitat Zhang JC, Lu HY, Lv GY et al (2010) The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: an experimental study in rabbit mandibles. Int J Oral Maxillofac Surg 39:469–477CrossRef Zhang JC, Lu HY, Lv GY et al (2010) The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: an experimental study in rabbit mandibles. Int J Oral Maxillofac Surg 39:469–477CrossRef
96.
Zurück zum Zitat Wu HC, Wang TW, Sun JS et al (2016) Development and characterization of a bioinspired bone matrix with aligned nanocrystalline hydroxyapatite on collagen nanofibers. Materials 9:E198CrossRef Wu HC, Wang TW, Sun JS et al (2016) Development and characterization of a bioinspired bone matrix with aligned nanocrystalline hydroxyapatite on collagen nanofibers. Materials 9:E198CrossRef
97.
Zurück zum Zitat Vimalraj S, Arumugam B, Miranda PJ et al (2015) Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 78:202–208CrossRef Vimalraj S, Arumugam B, Miranda PJ et al (2015) Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 78:202–208CrossRef
98.
Zurück zum Zitat Risteli L, Koivula MK, Risteli J (2014) Procollagen assays in cancer. Adv Clin Chem 66:79–100CrossRef Risteli L, Koivula MK, Risteli J (2014) Procollagen assays in cancer. Adv Clin Chem 66:79–100CrossRef
99.
Zurück zum Zitat De Toni L, Di Nisio A, Rocca MS et al (2017) Osteocalcin, a bone-derived hormone with important andrological implications. Andrology 5:664–670CrossRef De Toni L, Di Nisio A, Rocca MS et al (2017) Osteocalcin, a bone-derived hormone with important andrological implications. Andrology 5:664–670CrossRef
100.
Zurück zum Zitat Chesnutt BM, Yuan Y, Buddington K et al (2009) Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng Part A 15:2571–2579CrossRef Chesnutt BM, Yuan Y, Buddington K et al (2009) Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng Part A 15:2571–2579CrossRef
101.
Zurück zum Zitat Lee JS, Baek SD, Venkatesan J et al (2014) In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration. Int J Biol Macromol 67:360–366CrossRef Lee JS, Baek SD, Venkatesan J et al (2014) In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration. Int J Biol Macromol 67:360–366CrossRef
102.
Zurück zum Zitat Ruan SQ, Yan L, Deng J et al (2017) Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. Int Orthop 41:1899–1908CrossRef Ruan SQ, Yan L, Deng J et al (2017) Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. Int Orthop 41:1899–1908CrossRef
103.
Zurück zum Zitat Oryan A, Alidadi S, Bigham-Sadegh A et al (2016) Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. J Mater Sci Mater Med 27:155CrossRef Oryan A, Alidadi S, Bigham-Sadegh A et al (2016) Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. J Mater Sci Mater Med 27:155CrossRef
104.
Zurück zum Zitat Li T, Liu ZL, Xiao M et al (2017) In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Advances 7:54100–54110CrossRef Li T, Liu ZL, Xiao M et al (2017) In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Advances 7:54100–54110CrossRef
105.
Zurück zum Zitat Jin HH, Kim DH, Kim TW et al (2012) In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering. Int J Biol Macromol 51:1079–1085CrossRef Jin HH, Kim DH, Kim TW et al (2012) In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering. Int J Biol Macromol 51:1079–1085CrossRef
Metadaten
Titel
Composites Containing Marine Biomaterials for Bone Tissue Repair
verfasst von
K. Balagangadharan
Harsha Rao
PranavKumar Shadamarshan
Harini Balaji
N. Selvamurugan
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8855-2_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.