Skip to main content
Erschienen in: Journal of Materials Science 2/2015

01.01.2015 | Original Paper

Compounds based on Group 14 elements: building blocks for advanced insulator dielectrics design

Erschienen in: Journal of Materials Science | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Being in the group with the most diverse set of properties among all in the periodic table, the Group 14 elements (C, Si, Ge, Sn, and Pb) are particularly interesting candidates for structure–property investigation. Motivated by the need to create new insulators for energy storage and electronics applications, we study a few compounds based on Group 14 elements in this work, namely the dihydrides, dichlorides, and difluorides. Using density functional theory (DFT) calculations, we establish patterns in their properties, including favored coordination chemistry, stability, electronic structure, and dielectric behavior. While a coordination number (CN) of 4 is commonly associated with Group 14 elements, there is a significant deviation from it down the group, with CNs as high as 7 and 8 common in Pb. Further, there is an increase in the relative stability of the +2 oxidation state as opposed to +4 when we go from C to Pb, a direct consequence of which is the existence of the di-compounds of C and Si as polymers, whereas the compounds of Ge, Sn, and Pb are strictly 3D crystalline solids. The coordination chemistries are further linked with the band gaps and dielectric constants (divided into two components: the electronic part and the ionic part) of these compounds. We also see that the more stable difluorides and dichlorides have large band gaps and small electronic dielectric constants, and most of the Ge and Sn compounds have remarkably large ionic dielectric constants by virtue of having polar and more flexible bonds. The staggering variation in properties displayed by these parent compounds offers opportunities for designing derivative materials with a desired combination of properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wen X-D, Cahill TJ, Hoffmann R (2010) Exploring Group 14 Structures: 1D to 2D to 3D. Chem Eur J 16:6555–6566CrossRef Wen X-D, Cahill TJ, Hoffmann R (2010) Exploring Group 14 Structures: 1D to 2D to 3D. Chem Eur J 16:6555–6566CrossRef
2.
Zurück zum Zitat Cotton FA, Wilkinson G (1993) Advanced inorganic chemistry: a comprehensive text. Wiley, New York, pp 309–338 Cotton FA, Wilkinson G (1993) Advanced inorganic chemistry: a comprehensive text. Wiley, New York, pp 309–338
4.
Zurück zum Zitat Wang CC, Pilania G, Ramprasad R (2013) Dielectric properties of carbon-, silicon-, and germanium-based polymers: a first-principles study. Phys. Rev. B 87:035103CrossRef Wang CC, Pilania G, Ramprasad R (2013) Dielectric properties of carbon-, silicon-, and germanium-based polymers: a first-principles study. Phys. Rev. B 87:035103CrossRef
5.
Zurück zum Zitat Pilania G, Wang CC, Wu K, Sukumar N, Breneman C, Sotzing G, Ramprasad R (2013) New Group IV chemical motifs for improved dielectric permittivity of polyethylene. J Chem Inf Model 53:879–886CrossRef Pilania G, Wang CC, Wu K, Sukumar N, Breneman C, Sotzing G, Ramprasad R (2013) New Group IV chemical motifs for improved dielectric permittivity of polyethylene. J Chem Inf Model 53:879–886CrossRef
6.
Zurück zum Zitat Hohenberg P, Kohn W (1964) Inhomogenous electron gas. Phys Rev 136(3B):864–871CrossRef Hohenberg P, Kohn W (1964) Inhomogenous electron gas. Phys Rev 136(3B):864–871CrossRef
7.
Zurück zum Zitat Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133–1138CrossRef Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133–1138CrossRef
8.
Zurück zum Zitat Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRef Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRef
9.
Zurück zum Zitat G. Kresse, Ph.D. thesis (1993) Ab. initio molecular dynamics for liquid metals. Technische Universitat Wien G. Kresse, Ph.D. thesis (1993) Ab. initio molecular dynamics for liquid metals. Technische Universitat Wien
10.
Zurück zum Zitat Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. J Comput Mater Sci 6:15–50CrossRef Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. J Comput Mater Sci 6:15–50CrossRef
11.
Zurück zum Zitat Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRef Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRef
12.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
13.
Zurück zum Zitat Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRef Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRef
14.
Zurück zum Zitat Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401–246404CrossRef Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401–246404CrossRef
15.
Zurück zum Zitat Klimeš J, Bowler DR, Michaelides A (2011) Van der Waals density functionals applied to solids. Phys Rev B 83:195131–195144CrossRef Klimeš J, Bowler DR, Michaelides A (2011) Van der Waals density functionals applied to solids. Phys Rev B 83:195131–195144CrossRef
16.
Zurück zum Zitat Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215CrossRef Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215CrossRef
17.
Zurück zum Zitat Baroni S, de Gironcoli S, Dal Corso A (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562CrossRef Baroni S, de Gironcoli S, Dal Corso A (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562CrossRef
19.
Zurück zum Zitat Avitabile G, Napolitano R, Pirozzi B, Rouse KD, Thomas MW, Willis BTM (1975) Low temperature crystal structure of polyethylene: results from a neutron diffraction study and from potential energy calculations. J Polymer Sci 13(6):351–355 Avitabile G, Napolitano R, Pirozzi B, Rouse KD, Thomas MW, Willis BTM (1975) Low temperature crystal structure of polyethylene: results from a neutron diffraction study and from potential energy calculations. J Polymer Sci 13(6):351–355
20.
Zurück zum Zitat Nakafuku C, Takemura T (1975) Crystal structure of high pressure phase of polytetrafluoroethylene. Jpn J Appl Phys 14:599–602CrossRef Nakafuku C, Takemura T (1975) Crystal structure of high pressure phase of polytetrafluoroethylene. Jpn J Appl Phys 14:599–602CrossRef
21.
Zurück zum Zitat Trotter J, Akhtar M, Bartlett N (1966) The crystal structure of germanium difluoride. J Chem Soc A 30–33 Trotter J, Akhtar M, Bartlett N (1966) The crystal structure of germanium difluoride. J Chem Soc A 30–33
22.
Zurück zum Zitat Doll K, Jansen M (2011) Ab initio energy landscape of GeF2: a system featuring lone pair structure candidates. Angew Chem Int Ed 50:4627–4632CrossRef Doll K, Jansen M (2011) Ab initio energy landscape of GeF2: a system featuring lone pair structure candidates. Angew Chem Int Ed 50:4627–4632CrossRef
23.
Zurück zum Zitat Denes G (1989) Phase transitions and structural relationships between Ge5F12, GeF2, SnF2, and TeO2. J Solid State Chem 78:52–65CrossRef Denes G (1989) Phase transitions and structural relationships between Ge5F12, GeF2, SnF2, and TeO2. J Solid State Chem 78:52–65CrossRef
24.
Zurück zum Zitat Denes G, Pannetier J, Lucas J (1980) About SnF2 stannous fluoride. II. Crystal structure of β- and γ-SnF2. J Solid State Chem 33:1–11CrossRef Denes G, Pannetier J, Lucas J (1980) About SnF2 stannous fluoride. II. Crystal structure of β- and γ-SnF2. J Solid State Chem 33:1–11CrossRef
25.
Zurück zum Zitat Pannetier J, Denes G, Durand M, Buevoz JL (1980) β γ-SnF2 phase transition: neutron diffraction and NMR study. J Phys 41:1019–1024CrossRef Pannetier J, Denes G, Durand M, Buevoz JL (1980) β γ-SnF2 phase transition: neutron diffraction and NMR study. J Phys 41:1019–1024CrossRef
26.
Zurück zum Zitat Kudrnovský J, Christensen NE, Maek J (1991) Electronic structure of fluorite-type compounds and mixed crystals. Phys Rev B 43:12597–12606CrossRef Kudrnovský J, Christensen NE, Maek J (1991) Electronic structure of fluorite-type compounds and mixed crystals. Phys Rev B 43:12597–12606CrossRef
28.
Zurück zum Zitat Coleman F, Feng G, Murphy RW, Nockemann P, Seddon KR, Swadźba-Kwaśny Małgorzata (2013) Lead (II) chloride ionic liquids and organic/inorganic hybrid materials: a study of chloroplumbate (II) speciation. Dalton Trans 42:5025–5035CrossRef Coleman F, Feng G, Murphy RW, Nockemann P, Seddon KR, Swadźba-Kwaśny Małgorzata (2013) Lead (II) chloride ionic liquids and organic/inorganic hybrid materials: a study of chloroplumbate (II) speciation. Dalton Trans 42:5025–5035CrossRef
29.
Zurück zum Zitat Erk C, Hammerschmidt L, Andrae D, Paulus B, Schlecht S (2011) Low-temperature formation of cubic b-PbF2: precursor-based synthesis and first-principles phase stability study. Phys Chem Chem Phys 13:6029–6035CrossRef Erk C, Hammerschmidt L, Andrae D, Paulus B, Schlecht S (2011) Low-temperature formation of cubic b-PbF2: precursor-based synthesis and first-principles phase stability study. Phys Chem Chem Phys 13:6029–6035CrossRef
30.
Zurück zum Zitat Hull S, Berastegui P, Eriksson SG, Gardner NJG (1998) Crystal structure and superionic conductivity of PbF2 doped with KF. J Phys: Condens Matter 10:8429–8446 Hull S, Berastegui P, Eriksson SG, Gardner NJG (1998) Crystal structure and superionic conductivity of PbF2 doped with KF. J Phys: Condens Matter 10:8429–8446
31.
Zurück zum Zitat Harrison WA (1973) Bond-orbital model and the properties of tetrahedrally coordinated solids. Phys Rev B 8:4487–4498CrossRef Harrison WA (1973) Bond-orbital model and the properties of tetrahedrally coordinated solids. Phys Rev B 8:4487–4498CrossRef
32.
Zurück zum Zitat Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002CrossRef Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002CrossRef
33.
Zurück zum Zitat Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G (2011) Data mined ionic substitutions for the discovery of new compounds. Inorg Chem 50:656–663CrossRef Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G (2011) Data mined ionic substitutions for the discovery of new compounds. Inorg Chem 50:656–663CrossRef
Metadaten
Titel
Compounds based on Group 14 elements: building blocks for advanced insulator dielectrics design
Publikationsdatum
01.01.2015
Erschienen in
Journal of Materials Science / Ausgabe 2/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8640-2

Weitere Artikel der Ausgabe 2/2015

Journal of Materials Science 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.