Skip to main content
Erschienen in:

27.04.2024 | Original Article

Comprehensive polygonal topology optimization for triplet thermo-mechanical-pressure multi-material systems

verfasst von: Thanh T. Banh, Dongkyu Lee

Erschienen in: Engineering with Computers | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Current advancements in topology optimization research have extensively explored thermoelastic problems. Yet, notable limitations persist in effectively handling design-dependent fluidic pressure loads, particularly in the realm of coupled thermo-mechanical systems. To bridge this gap, this study proposes a novel and consistent methodology that comprehensively accommodates these challenges. The principal contributions of this research are threefold: (1) presenting an innovative and comprehensive solution for triplet thermo-mechanical-pressure problems, achieved through the establishment of a specific pressure field using Darcy’s law and a drainage term, (2) broadening the scope to incorporate flexible polygonal meshes within generalized Solid Isotropic Material with Penalization (SIMP)-based multi-material systems, and (3) introducing an alternative interpolated model related to independent material properties, specifically the general thermal stress coefficient, to simplify the complexity during sensitivity calculations of thermal-strain load in generalized SIMP-based multi-material problems. Additionally, within the scope of this study, several investigations into penalty parameters in solids, not unified in previous coupled thermo-mechanical multi-material problems, are also conducted. Three additional adjoint vectors are introduced using the adjoint variable technique for sensitivity analysis to enhance computational efficiency in the gradient-based mathematical programming algorithm. The effectiveness and reliability of this method are validated through numerical examples, demonstrating its efficiency, robustness, and practicality.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jewett JL, Carstensen JV (2021) Topology-optimized design, construction and experimental evaluation of concrete beams. Autom Constr 102:59–67 Jewett JL, Carstensen JV (2021) Topology-optimized design, construction and experimental evaluation of concrete beams. Autom Constr 102:59–67
2.
Zurück zum Zitat Vantyghem G, De Corte W, Shakour E, Amir O (2020) 3D printing of a post-tensioned concrete girder designed by topology optimization. Autom Constr 112:103084 Vantyghem G, De Corte W, Shakour E, Amir O (2020) 3D printing of a post-tensioned concrete girder designed by topology optimization. Autom Constr 112:103084
3.
Zurück zum Zitat Stoiber N, Kromoser B (2021) Topology optimization in concrete construction: a systematic review on numerical and experimental investigations. Struct Multidiscip Optim 64:1725–1749 Stoiber N, Kromoser B (2021) Topology optimization in concrete construction: a systematic review on numerical and experimental investigations. Struct Multidiscip Optim 64:1725–1749
4.
Zurück zum Zitat Cheng G, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17:305–323MathSciNet Cheng G, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17:305–323MathSciNet
5.
Zurück zum Zitat Allaire G (2002) Shape optimization by the homogenization method. Springer, New York Allaire G (2002) Shape optimization by the homogenization method. Springer, New York
6.
Zurück zum Zitat Cherkaev A (2000) Variational methods for structural optimization. Springer, New York Cherkaev A (2000) Variational methods for structural optimization. Springer, New York
7.
Zurück zum Zitat Tartar L (2000) An introduction to the homogenization method in optimal design in optimal shape design (Troia, 1998). In: Cellina A, Ornelas A (eds) Lecture notes in mathematics, vol 355. Springer, Berlin, pp 47–156 Tartar L (2000) An introduction to the homogenization method in optimal design in optimal shape design (Troia, 1998). In: Cellina A, Ornelas A (eds) Lecture notes in mathematics, vol 355. Springer, Berlin, pp 47–156
8.
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNet Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNet
9.
Zurück zum Zitat Sigmund O (2001) Design of multiphysics actuators using topology optimization - Part II: Two-material structures. Comput Methods Appl Mech Eng 190(49–50):6605–6627 Sigmund O (2001) Design of multiphysics actuators using topology optimization - Part II: Two-material structures. Comput Methods Appl Mech Eng 190(49–50):6605–6627
10.
Zurück zum Zitat Cai K, Cao J, Shi J, Liu L, Qin QH (2016) Optimal layout of multiple bi-modulus materials. Struct Multidiscip Optim 53(4):801–811MathSciNet Cai K, Cao J, Shi J, Liu L, Qin QH (2016) Optimal layout of multiple bi-modulus materials. Struct Multidiscip Optim 53(4):801–811MathSciNet
11.
Zurück zum Zitat Li D, Kim IY (2018) Multi-material topology optimization for practical lightweight design. Struct Multidiscip Optim 58:1081–1094MathSciNet Li D, Kim IY (2018) Multi-material topology optimization for practical lightweight design. Struct Multidiscip Optim 58:1081–1094MathSciNet
12.
Zurück zum Zitat Banh TT, Lieu XQ, Lee J, Kang J, Lee D (2023) A robust dynamic unified multi-material topology optimization method for functionally graded structures. Struct Multidiscip Optim 66:75MathSciNet Banh TT, Lieu XQ, Lee J, Kang J, Lee D (2023) A robust dynamic unified multi-material topology optimization method for functionally graded structures. Struct Multidiscip Optim 66:75MathSciNet
13.
Zurück zum Zitat Banh TT, Lieu QX, Kang J, Ju Y, Shin S, Lee D (2023) A novel robust stress-based multimaterial topology optimization model for structural stability framework using refined adaptive continuation method. Eng Comput Banh TT, Lieu QX, Kang J, Ju Y, Shin S, Lee D (2023) A novel robust stress-based multimaterial topology optimization model for structural stability framework using refined adaptive continuation method. Eng Comput
14.
Zurück zum Zitat Banh TT, Shin S, Kang J, Lee D (2024) Comprehensive multi-material topology optimization for stress-driven design with refined volume constraint subjected to harmonic force excitation. Eng Comput Banh TT, Shin S, Kang J, Lee D (2024) Comprehensive multi-material topology optimization for stress-driven design with refined volume constraint subjected to harmonic force excitation. Eng Comput
15.
Zurück zum Zitat Banh TT, Shin S, Kang J, Lee D (2024) Frequency-constrained topology optimization in incompressible multi-material systems under design-dependent loads. Thin-Wall Struct 196:111467 Banh TT, Shin S, Kang J, Lee D (2024) Frequency-constrained topology optimization in incompressible multi-material systems under design-dependent loads. Thin-Wall Struct 196:111467
16.
Zurück zum Zitat Wang Y, Luo Z, Kang Z, Zhang N (2015) A multi-material level set-based topology and shape optimization method. Comput Methods Appl Mech Eng 283:1570–1586MathSciNet Wang Y, Luo Z, Kang Z, Zhang N (2015) A multi-material level set-based topology and shape optimization method. Comput Methods Appl Mech Eng 283:1570–1586MathSciNet
17.
Zurück zum Zitat Liu P, Luo Y, Kang Z (2016) Multi-material topology optimization considering interface behavior via XFEM and level set method. Comput Methods Appl Mech Eng 308:113–133MathSciNet Liu P, Luo Y, Kang Z (2016) Multi-material topology optimization considering interface behavior via XFEM and level set method. Comput Methods Appl Mech Eng 308:113–133MathSciNet
18.
Zurück zum Zitat Zuo W, Saitou K (2017) Multi-material topology optimization using ordered SIMP interpolation. Struct Multidiscip Optim 55:477–491MathSciNet Zuo W, Saitou K (2017) Multi-material topology optimization using ordered SIMP interpolation. Struct Multidiscip Optim 55:477–491MathSciNet
19.
Zurück zum Zitat Zhou SW, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct Multidiscip Optim 33:89–111MathSciNet Zhou SW, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct Multidiscip Optim 33:89–111MathSciNet
20.
Zurück zum Zitat Tavakoli R, Mohseni M (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multidiscip Optimiz 49:621–642MathSciNet Tavakoli R, Mohseni M (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multidiscip Optimiz 49:621–642MathSciNet
21.
Zurück zum Zitat Lieu XQ, Lee J (2017) Multiresolution topology optimization using isogeometric analysis. Int J Numer Methods Eng 112:2025–2047MathSciNet Lieu XQ, Lee J (2017) Multiresolution topology optimization using isogeometric analysis. Int J Numer Methods Eng 112:2025–2047MathSciNet
22.
Zurück zum Zitat Lieu XQ, Lee J (2017) A multi-resolution approach for multi-material topology optimization based on isogeometric analysis. Comput Methods Appl Mech Eng 323:272–302MathSciNet Lieu XQ, Lee J (2017) A multi-resolution approach for multi-material topology optimization based on isogeometric analysis. Comput Methods Appl Mech Eng 323:272–302MathSciNet
23.
Zurück zum Zitat Nguyen NM, Bui QT (2022) Multi-material gradient-free proportional topology optimization analysis for plates with variable thickness. Struct Multidiscip Optim 65:75MathSciNet Nguyen NM, Bui QT (2022) Multi-material gradient-free proportional topology optimization analysis for plates with variable thickness. Struct Multidiscip Optim 65:75MathSciNet
24.
Zurück zum Zitat Hoang VN, Pham T, Ho D, Nguyen XH (2021) Robust multiscale design of incompressible multi-materials under loading uncertainties. Eng Comput Hoang VN, Pham T, Ho D, Nguyen XH (2021) Robust multiscale design of incompressible multi-materials under loading uncertainties. Eng Comput
25.
Zurück zum Zitat Wang MY, Chen SK, Wang XM, Mei YL (2005) Design of multi-material compliant mechanisms using level-set methods. J Mech Des 127:941–956 Wang MY, Chen SK, Wang XM, Mei YL (2005) Design of multi-material compliant mechanisms using level-set methods. J Mech Des 127:941–956
26.
Zurück zum Zitat Zhuang CA, Xiong ZH, Ding H (2010) Topology optimization of multi-material for the heat conduction problem based on the level set method. Eng Optim 42:811–831MathSciNet Zhuang CA, Xiong ZH, Ding H (2010) Topology optimization of multi-material for the heat conduction problem based on the level set method. Eng Optim 42:811–831MathSciNet
27.
Zurück zum Zitat Banh TT, Lee D (2018) Multimaterial topology optimization design for continuum structures with crack patterns. Compos Struct 186:193–209 Banh TT, Lee D (2018) Multimaterial topology optimization design for continuum structures with crack patterns. Compos Struct 186:193–209
28.
Zurück zum Zitat Banh TT, Luu GN, Lieu XQ, Lee JH, Kang J, Lee DK (2021) Multiple bi-directional FGMs topology optimization approach with a preconditioned conjugate gradient multigrid. Steel Compos Struct 41(3):385–402 Banh TT, Luu GN, Lieu XQ, Lee JH, Kang J, Lee DK (2021) Multiple bi-directional FGMs topology optimization approach with a preconditioned conjugate gradient multigrid. Steel Compos Struct 41(3):385–402
29.
Zurück zum Zitat Ooms T, Vantyghem G, Thienpont T, Coile RV, Corte WD (2023) Thermoelastic topology optimization of structural components at elevated temperatures considering transient heat conduction. Eng Comput Ooms T, Vantyghem G, Thienpont T, Coile RV, Corte WD (2023) Thermoelastic topology optimization of structural components at elevated temperatures considering transient heat conduction. Eng Comput
30.
Zurück zum Zitat de Kruijf N, Zhou S, Li Q, Mai Y-W (2007) Topological design of structures and composite materials with multiobjectives. Int J Solids Struct 22(2007):7092–7109 de Kruijf N, Zhou S, Li Q, Mai Y-W (2007) Topological design of structures and composite materials with multiobjectives. Int J Solids Struct 22(2007):7092–7109
31.
Zurück zum Zitat Rodrigues H, Fernandes P (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Methods Eng 38(2007):1951–1965MathSciNet Rodrigues H, Fernandes P (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Methods Eng 38(2007):1951–1965MathSciNet
32.
Zurück zum Zitat Diaz A, Benard A. Topology optimization of heat-resistant structures. In: ASME 2003 international design engineering technical conferences and computers and information in engineering conference Diaz A, Benard A. Topology optimization of heat-resistant structures. In: ASME 2003 international design engineering technical conferences and computers and information in engineering conference
33.
Zurück zum Zitat Gao T, Zhang W, Zhu J, Xu Y, Bassir D (2008) Topology optimization of heat conduction problem involving design-dependent heat load effect. Finite Elem Anal Des 44(38):805–813 Gao T, Zhang W, Zhu J, Xu Y, Bassir D (2008) Topology optimization of heat conduction problem involving design-dependent heat load effect. Finite Elem Anal Des 44(38):805–813
34.
Zurück zum Zitat Gao T, Zhang W (2010) Topology optimization involving thermo-elastic stress loads. Struct Multidiscip Optim 44(42):725–738MathSciNet Gao T, Zhang W (2010) Topology optimization involving thermo-elastic stress loads. Struct Multidiscip Optim 44(42):725–738MathSciNet
35.
Zurück zum Zitat Zhu X, Zhao C, Wang X, Zhou Y, Hu P, Ma Z-D (2019) Temperature-constrained topology optimization of thermo-mechanical coupled problems. Eng Optim 44(51):1687–1709MathSciNet Zhu X, Zhao C, Wang X, Zhou Y, Hu P, Ma Z-D (2019) Temperature-constrained topology optimization of thermo-mechanical coupled problems. Eng Optim 44(51):1687–1709MathSciNet
36.
Zurück zum Zitat Gao T, Xu P, Zhang W (2016) Topology optimization of thermo-elastic structures with multiple materials under mass constraint. Comput Struct 44(173):150–160 Gao T, Xu P, Zhang W (2016) Topology optimization of thermo-elastic structures with multiple materials under mass constraint. Comput Struct 44(173):150–160
37.
Zurück zum Zitat Thurier PF, Lesieutre GA, Frecker MI, Adair JH (2019) A two-material topology optimization method for structures under steady thermo-mechanical loading. J Intell Mater Syst Struct 30:1717–1726 Thurier PF, Lesieutre GA, Frecker MI, Adair JH (2019) A two-material topology optimization method for structures under steady thermo-mechanical loading. J Intell Mater Syst Struct 30:1717–1726
38.
Zurück zum Zitat Shishir MdIR, Tabarraei A (2024) Multi-materials topology optimization using deep neural network for coupled thermo-mechanical problems. Comput Struct 291:107218 Shishir MdIR, Tabarraei A (2024) Multi-materials topology optimization using deep neural network for coupled thermo-mechanical problems. Comput Struct 291:107218
39.
Zurück zum Zitat Nguyen MN, Jkang J, Shin S, Lee D (2023) Dynamic-constrained multi-material topology optimization under heat flux and thermal-mechanical loading. Thin-Wall Struct 193:111218 Nguyen MN, Jkang J, Shin S, Lee D (2023) Dynamic-constrained multi-material topology optimization under heat flux and thermal-mechanical loading. Thin-Wall Struct 193:111218
40.
Zurück zum Zitat Yuan B, Ye H, Li J, Wei N, Sui Y (2023) Topology optimization of geometrically nonlinear structures under thermal-mechanical coupling. Acta Mech Solida Sin 36:22–33 Yuan B, Ye H, Li J, Wei N, Sui Y (2023) Topology optimization of geometrically nonlinear structures under thermal-mechanical coupling. Acta Mech Solida Sin 36:22–33
41.
Zurück zum Zitat Talischi C, Paulino GH, Pereira A (2019) Multi-material topology optimization for thermal buckling criteria. Comput Methods Appl Mech Eng 346:1136–1155MathSciNet Talischi C, Paulino GH, Pereira A (2019) Multi-material topology optimization for thermal buckling criteria. Comput Methods Appl Mech Eng 346:1136–1155MathSciNet
42.
Zurück zum Zitat Gao T, Zhang W (2009) Topology optimization of multiphase-material structures under design-dependent pressure loads. Int J Simul Multidiscip Des Optim 3:297–306 Gao T, Zhang W (2009) Topology optimization of multiphase-material structures under design-dependent pressure loads. Int J Simul Multidiscip Des Optim 3:297–306
43.
Zurück zum Zitat Hammer VB, Olhoff N (2000) Topology optimization of continuum structures subjected to pressure loading. Struct Multidiscip Optim 19:85–92 Hammer VB, Olhoff N (2000) Topology optimization of continuum structures subjected to pressure loading. Struct Multidiscip Optim 19:85–92
44.
Zurück zum Zitat Du J, Olhoff N (2004) Topological optimization of continuum structures with design-dependent surface loading-part i: new computational approach for 2D problems. Struct Multidiscip Optim 27:151–165MathSciNet Du J, Olhoff N (2004) Topological optimization of continuum structures with design-dependent surface loading-part i: new computational approach for 2D problems. Struct Multidiscip Optim 27:151–165MathSciNet
45.
Zurück zum Zitat Du J, Olhoff N (2004) Topology optimization of continuum structures with design-dependent surface loading-Part II: Algorithm and example for 3D problems. Struct Multidisc Optim 27:166–177 Du J, Olhoff N (2004) Topology optimization of continuum structures with design-dependent surface loading-Part II: Algorithm and example for 3D problems. Struct Multidisc Optim 27:166–177
46.
Zurück zum Zitat Zhang H, Zhang X, Liu S (2008) A new boundary search scheme for topology optimization of continuum structures with design-dependent loads. Struct Multidisc Optim 37:121–129 Zhang H, Zhang X, Liu S (2008) A new boundary search scheme for topology optimization of continuum structures with design-dependent loads. Struct Multidisc Optim 37:121–129
47.
Zurück zum Zitat Lee E, Martins JRRA (2012) Structural topology optimization with design-dependent pressure loads. Comput Methods Appl Mech Eng 40–48:233–236MathSciNet Lee E, Martins JRRA (2012) Structural topology optimization with design-dependent pressure loads. Comput Methods Appl Mech Eng 40–48:233–236MathSciNet
48.
Zurück zum Zitat Wang C, Zhao M, Ge T (2016) Structural topology optimization with design-dependent pressure loads. Struct Multidiscip Optim 53:1005–1018MathSciNet Wang C, Zhao M, Ge T (2016) Structural topology optimization with design-dependent pressure loads. Struct Multidiscip Optim 53:1005–1018MathSciNet
49.
Zurück zum Zitat Chen BC, Kikuchi N (2001) Topology optimization with design-dependent loads. Finite Elem Anal Des 39:57–70 Chen BC, Kikuchi N (2001) Topology optimization with design-dependent loads. Finite Elem Anal Des 39:57–70
50.
Zurück zum Zitat Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM Control Optim Calc Var 9:19–48MathSciNet Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM Control Optim Calc Var 9:19–48MathSciNet
51.
Zurück zum Zitat Sigmund O, Clausen PM (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196:1874–1889MathSciNet Sigmund O, Clausen PM (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196:1874–1889MathSciNet
52.
Zurück zum Zitat Yoon GH, Jensen JS, Sigmund O (2007) Topology optimization of acoustic-structure problems using a mixed finite element formulation. Int J Numer Methods Eng 70:1049–1075MathSciNet Yoon GH, Jensen JS, Sigmund O (2007) Topology optimization of acoustic-structure problems using a mixed finite element formulation. Int J Numer Methods Eng 70:1049–1075MathSciNet
53.
Zurück zum Zitat Yoon GH (2010) Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation. Int J Numer Methods Eng 82:591–616 Yoon GH (2010) Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation. Int J Numer Methods Eng 82:591–616
54.
Zurück zum Zitat Sivapuram R, Picelli R (2020) Topology design of binary structures subjected to design-dependent thermal expansion and fluid pressure loads. Struct Multidiscip Optim 61:1877–1895MathSciNet Sivapuram R, Picelli R (2020) Topology design of binary structures subjected to design-dependent thermal expansion and fluid pressure loads. Struct Multidiscip Optim 61:1877–1895MathSciNet
55.
Zurück zum Zitat Kumar P, Frouws JS, Langelaar M (2020) Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method. Struct Multidiscip Optim 61:1637–1655MathSciNet Kumar P, Frouws JS, Langelaar M (2020) Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method. Struct Multidiscip Optim 61:1637–1655MathSciNet
56.
Zurück zum Zitat Kumar P (2022) Topology optimization of stiff structures under self-weight for given volume using a smooth Heaviside function. Struct Multidiscip Optim 65:1–17MathSciNet Kumar P (2022) Topology optimization of stiff structures under self-weight for given volume using a smooth Heaviside function. Struct Multidiscip Optim 65:1–17MathSciNet
57.
Zurück zum Zitat Kumar P (2023) TOPress: a MATLAB implementation for topology optimization of structures subjected to design-dependent pressure loads. Struct Multidiscip Optim 66:97MathSciNet Kumar P (2023) TOPress: a MATLAB implementation for topology optimization of structures subjected to design-dependent pressure loads. Struct Multidiscip Optim 66:97MathSciNet
58.
Zurück zum Zitat Kumar P (2023) Topology optimization of pressure-loaded multi-material structures. Financ Sci Comput Eng Kumar P (2023) Topology optimization of pressure-loaded multi-material structures. Financ Sci Comput Eng
59.
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNet Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNet
60.
Zurück zum Zitat Sukumar N, Tabarraei A (2020) Conforming polygonal finite elements. Int J Numer Methods Eng 61:2045–2066MathSciNet Sukumar N, Tabarraei A (2020) Conforming polygonal finite elements. Int J Numer Methods Eng 61:2045–2066MathSciNet
61.
Zurück zum Zitat Talischi C, Paulino GH, Pereira A, Menezes IFM (2009) Polygonal finite elements for topology optimization: a unifying paradigm. Int J Numer Methods Eng 82:671–698 Talischi C, Paulino GH, Pereira A, Menezes IFM (2009) Polygonal finite elements for topology optimization: a unifying paradigm. Int J Numer Methods Eng 82:671–698
62.
Zurück zum Zitat Talischi C, Paulino GH, Pereira A (2012) PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45:329–357MathSciNet Talischi C, Paulino GH, Pereira A (2012) PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45:329–357MathSciNet
63.
Zurück zum Zitat Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Butterworth-Heinemann, Oxford Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Butterworth-Heinemann, Oxford
64.
Zurück zum Zitat Swaminathan K, Sangeetha DM (2017) Thermal analysis of FGM plates—a critical review of various modelling techniques and solution methods. Compos Struct 160:43–60 Swaminathan K, Sangeetha DM (2017) Thermal analysis of FGM plates—a critical review of various modelling techniques and solution methods. Compos Struct 160:43–60
Metadaten
Titel
Comprehensive polygonal topology optimization for triplet thermo-mechanical-pressure multi-material systems
verfasst von
Thanh T. Banh
Dongkyu Lee
Publikationsdatum
27.04.2024
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 5/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-024-01982-4