Skip to main content

2024 | OriginalPaper | Buchkapitel

Comprehensive Survey of Machine Learning Techniques for Detecting and Preventing Network Layer DoS Attacks

verfasst von : Niraj Prasad Bhatta, Ashutosh Ghimire, Al Amin Hossain, Fathi Amsaad

Erschienen in: Internet of Things. Advances in Information and Communication Technology

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the increasing reliance on computer networks in our daily lives, the threat of network layer DoS (Denial of Service) attacks has become more prevalent. Attackers use various techniques to disrupt network services and cause loss of data, revenue, and reputation. Recent development in machine learning approaches have shown promise in prevention and detection of such types of attacks by several orders of magnitude. In this paper a thorough overview of machine learning approaches for detecting and preventing network layer DoS attacks is presented. Firstly, the basics of network layer DoS attacks, their classification, and the impact of these attacks is discussed. Then, different machine learning techniques and the ways in which they can be utilized for attack detection and prevention is explored. Additionally, analysis on the strengths and limitations of each approach, and provide a comparative study of the most relevant works in this field is done. Finally, some obstacles in research and potential avenues for future exploration is presented. in the field of machine learning-based defense mechanisms against network layer DoS attacks is discussed. In this paper a detailed summary of the most up-to-date advancements or developments in machine learning-based defense mechanisms against network layer DoS attacks is shown and serve as a reference for one and all who are involved in this field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tayyab, M., Belaton, B., Anbar, M.: ICMPv6-based DoS and DDoS attacks detection using machine learning techniques, open challenges, and blockchain applicability: a review. IEEE Access 8, 170529–170547 (2020)CrossRef Tayyab, M., Belaton, B., Anbar, M.: ICMPv6-based DoS and DDoS attacks detection using machine learning techniques, open challenges, and blockchain applicability: a review. IEEE Access 8, 170529–170547 (2020)CrossRef
2.
Zurück zum Zitat Xing, F., Wenye, W.: Understanding dynamic denial of service attacks in mobile ad hoc networks. In: MILCoM 2006–2006 IEEE Military Communications conference. IEEE (2006) Xing, F., Wenye, W.: Understanding dynamic denial of service attacks in mobile ad hoc networks. In: MILCoM 2006–2006 IEEE Military Communications conference. IEEE (2006)
4.
Zurück zum Zitat Gebremariam, G.G., Panda, J., Indu, S.: Blockchain-based secure localization against malicious nodes in IoT-based wireless sensor networks using federated learning. Wireless Commun. Mobile Comput. 2023 (2023) Gebremariam, G.G., Panda, J., Indu, S.: Blockchain-based secure localization against malicious nodes in IoT-based wireless sensor networks using federated learning. Wireless Commun. Mobile Comput. 2023 (2023)
5.
Zurück zum Zitat Kukreti, S., et al.: DDoS attack using SYN flooding: a case study. In: 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). IEEE (2022) Kukreti, S., et al.: DDoS attack using SYN flooding: a case study. In: 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). IEEE (2022)
6.
Zurück zum Zitat Patel, L., et al.: Machine learning methods in drug discovery. Molecules 25(22), 5277 (2020)CrossRef Patel, L., et al.: Machine learning methods in drug discovery. Molecules 25(22), 5277 (2020)CrossRef
7.
Zurück zum Zitat Subbulakshmi, T., et al.: A unified approach for detection and prevention of DDoS attacks using enhanced support vector machines and filtering mechanisms. ICTACT J. Commun. Technol. 4(2), 737–743 (2013)CrossRef Subbulakshmi, T., et al.: A unified approach for detection and prevention of DDoS attacks using enhanced support vector machines and filtering mechanisms. ICTACT J. Commun. Technol. 4(2), 737–743 (2013)CrossRef
8.
Zurück zum Zitat Baarzi, A.F.: Efficient service deployment on public cloud: a cost, performance, and security perspective. The Pennsylvania State University (2021) Baarzi, A.F.: Efficient service deployment on public cloud: a cost, performance, and security perspective. The Pennsylvania State University (2021)
9.
Zurück zum Zitat Allagi, S., Rachh, R., Anami, B.: A robust support vector machine based auto-encoder for DoS attacks identification in computer networks. In: 2021 International Conference on Intelligent Technologies (CONIT). IEEE (2021) Allagi, S., Rachh, R., Anami, B.: A robust support vector machine based auto-encoder for DoS attacks identification in computer networks. In: 2021 International Conference on Intelligent Technologies (CONIT). IEEE (2021)
10.
Zurück zum Zitat Drucker, H., Donghui, W., Vapnik, V.N.: Support vector machines for spam categorization. IEEE Trans. Neural Networks 10(5), 1048–1054 (1999)CrossRef Drucker, H., Donghui, W., Vapnik, V.N.: Support vector machines for spam categorization. IEEE Trans. Neural Networks 10(5), 1048–1054 (1999)CrossRef
11.
Zurück zum Zitat Al Duwairi, B., et al.: LogDoS: a novel logging-based DDoS prevention mechanism in path identifier-based information centric networks. Comput. Secur. 99, 102071 (2020)CrossRef Al Duwairi, B., et al.: LogDoS: a novel logging-based DDoS prevention mechanism in path identifier-based information centric networks. Comput. Secur. 99, 102071 (2020)CrossRef
12.
Zurück zum Zitat Ye, J., et al.: A DDoS attack detection method based on SVM in software defined network. Secur. Commun Networks 2018 (2018) Ye, J., et al.: A DDoS attack detection method based on SVM in software defined network. Secur. Commun Networks 2018 (2018)
13.
Zurück zum Zitat Krishnan, D., Singh, S.: Cost-sensitive bootstrapped weighted random forest for DoS attack detection in wireless sensor networks. In: TENCON 2021–2021 IEEE Region 10 Conference (TENCON). IEEE (2021) Krishnan, D., Singh, S.: Cost-sensitive bootstrapped weighted random forest for DoS attack detection in wireless sensor networks. In: TENCON 2021–2021 IEEE Region 10 Conference (TENCON). IEEE (2021)
15.
Zurück zum Zitat Singh, N., Virmani, D.: Computational method to prove efficacy of datasets. J. Inf. Optim. Sci. 42(1), 211–233 (2021) Singh, N., Virmani, D.: Computational method to prove efficacy of datasets. J. Inf. Optim. Sci. 42(1), 211–233 (2021)
16.
Zurück zum Zitat Nishanth, N., Mujeeb, A.: Modeling and detection of flooding-based denial-of-service attack in wireless ad hoc network using Bayesian inference. IEEE Syst. J. 15(1), 17–26 (2020)CrossRef Nishanth, N., Mujeeb, A.: Modeling and detection of flooding-based denial-of-service attack in wireless ad hoc network using Bayesian inference. IEEE Syst. J. 15(1), 17–26 (2020)CrossRef
17.
Zurück zum Zitat Shrivastava, U., Sharma, N.: Artificial neural network based dual layered predictive model for rare attack detection. In: 2020 International Conference on Computational Performance Evaluation (ComPE). IEEE (2020) Shrivastava, U., Sharma, N.: Artificial neural network based dual layered predictive model for rare attack detection. In: 2020 International Conference on Computational Performance Evaluation (ComPE). IEEE (2020)
18.
Zurück zum Zitat Mariam, W.B.W., Negash, Y.: Performance evaluation of machine learning algorithms for detection of SYN flood attack. In: 2021 IEEE AFRICON. IEEE (2021) Mariam, W.B.W., Negash, Y.: Performance evaluation of machine learning algorithms for detection of SYN flood attack. In: 2021 IEEE AFRICON. IEEE (2021)
20.
Zurück zum Zitat Gupta, B.B., Joshi, R.C., Misra, M.: Defending against distributed denial of service attacks: issues and challenges. Inf. Secur. J.: Global Perspect. 18(5), 224–247 (2009) Gupta, B.B., Joshi, R.C., Misra, M.: Defending against distributed denial of service attacks: issues and challenges. Inf. Secur. J.: Global Perspect. 18(5), 224–247 (2009)
Metadaten
Titel
Comprehensive Survey of Machine Learning Techniques for Detecting and Preventing Network Layer DoS Attacks
verfasst von
Niraj Prasad Bhatta
Ashutosh Ghimire
Al Amin Hossain
Fathi Amsaad
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-45882-8_23