Skip to main content

2019 | OriginalPaper | Buchkapitel

Compressed Sensing for Image Compression: Survey of Algorithms

verfasst von : S. K. Gunasheela, H. S. Prasantha

Erschienen in: Emerging Research in Computing, Information, Communication and Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Compressed sensing (CS) is an image acquisition method, where only few random measurements are taken instead of taking all the necessary samples as suggested by Nyquist sampling theorem. It is one of the most active research areas in the past decade. In this age of digital revolution, where we are dealing with humongous amount of digital data, exploring the concepts of compressed sensing and its applications in the field of image processing is very much relevant and necessary. The paper discusses the basic concepts of compressed sensing and advantages of incorporating CS-based algorithms in image compression. The paper also discusses the drawbacks of CS, and conclusion has been made regarding when the CS-based algorithms are effective and appropriate in image compression applications. As an example, reconstruction of an image acquired in compressed sensing way using \( l_{1} \) minimization, total variation-based augmented Lagrangian method and Bregman method is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Marks, R. J., II. (1991). Introduction to Shannon sampling and interpolation theory. Berlin: Springer.CrossRef Marks, R. J., II. (1991). Introduction to Shannon sampling and interpolation theory. Berlin: Springer.CrossRef
2.
Zurück zum Zitat Lustig, M., Donoho, D., & Pauly, J. (2007). Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 58(6), 1182–1195.CrossRef Lustig, M., Donoho, D., & Pauly, J. (2007). Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 58(6), 1182–1195.CrossRef
3.
4.
Zurück zum Zitat Martin, G., Bioucas-Dias, J. M., & Plaza, A. (2015). HYCA: A new technique for hyperspectral compressed sensing. IEEE Transactions on Geoscience and Remote Sensing, 53, 2819–2831.CrossRef Martin, G., Bioucas-Dias, J. M., & Plaza, A. (2015). HYCA: A new technique for hyperspectral compressed sensing. IEEE Transactions on Geoscience and Remote Sensing, 53, 2819–2831.CrossRef
5.
Zurück zum Zitat Takhar, D., Laska, J. N., Wakin, M. B., Duarte, M. F., Baron, D., Sarvotham, S., Kelly, K. F., & Baraniuk, R. G. (2006, January). A new compressed imaging camera architecture using optical-domain compression. Computational Imaging IV, 6065, 43–52. Takhar, D., Laska, J. N., Wakin, M. B., Duarte, M. F., Baron, D., Sarvotham, S., Kelly, K. F., & Baraniuk, R. G. (2006, January). A new compressed imaging camera architecture using optical-domain compression. Computational Imaging IV, 6065, 43–52.
6.
Zurück zum Zitat Candès, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.MathSciNetCrossRef Candès, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.MathSciNetCrossRef
8.
Zurück zum Zitat Candès, E., & Tao, T. (2006). Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12), 5406–5425.MathSciNetCrossRef Candès, E., & Tao, T. (2006). Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12), 5406–5425.MathSciNetCrossRef
9.
Zurück zum Zitat Black, P. E. (2005, February). “Greedy algorithm” in Dictionary of Algorithms and Data Structures [online], U.S. National Institute of Standards and Technology. Black, P. E. (2005, February). “Greedy algorithm” in Dictionary of Algorithms and Data Structures [online], U.S. National Institute of Standards and Technology.
10.
Zurück zum Zitat Mallat, S. G., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397–3415.CrossRef Mallat, S. G., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397–3415.CrossRef
11.
Zurück zum Zitat Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Twenty-Seventh Asilomar Conference on Signals, Systems and Computers. Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Twenty-Seventh Asilomar Conference on Signals, Systems and Computers.
12.
Zurück zum Zitat Santosa, F., & Symes, W. W. (1986). Linear inversion of band-limited reflection seismograms. SIAM Journal on Scientific and Statistical Computing, 7(4), 1307–1330.MathSciNetCrossRef Santosa, F., & Symes, W. W. (1986). Linear inversion of band-limited reflection seismograms. SIAM Journal on Scientific and Statistical Computing, 7(4), 1307–1330.MathSciNetCrossRef
13.
Zurück zum Zitat Donoho, D. L., & Stark, P. B. (1989). Uncertainty principles and signal recovery. SIAM Journal on Applied Mathematics, 49, 906–931.MathSciNetCrossRef Donoho, D. L., & Stark, P. B. (1989). Uncertainty principles and signal recovery. SIAM Journal on Applied Mathematics, 49, 906–931.MathSciNetCrossRef
14.
Zurück zum Zitat Donoho, D. L., & Logan, B. F. (1992). Signal recovery and the large sieve. SIAM Journal on Applied Mathematics, 52, 577–591.MathSciNetCrossRef Donoho, D. L., & Logan, B. F. (1992). Signal recovery and the large sieve. SIAM Journal on Applied Mathematics, 52, 577–591.MathSciNetCrossRef
15.
Zurück zum Zitat Donoho, D. L., & Huo, X. (2001). Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47, 2845–2862.MathSciNetCrossRef Donoho, D. L., & Huo, X. (2001). Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47, 2845–2862.MathSciNetCrossRef
16.
Zurück zum Zitat Donoho, D. L., & Elad, M. (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proceedings of the National Academy of Sciences of the United States of America, 100, 2197–2202.MathSciNetCrossRef Donoho, D. L., & Elad, M. (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proceedings of the National Academy of Sciences of the United States of America, 100, 2197–2202.MathSciNetCrossRef
17.
Zurück zum Zitat Elad, M., & Bruckstein, A. M. (2002). A generalized uncertainty principle and sparse representation in pairs of RN bases. IEEE Transactions on Information Theory, 48, 2558–2567.MathSciNetCrossRef Elad, M., & Bruckstein, A. M. (2002). A generalized uncertainty principle and sparse representation in pairs of RN bases. IEEE Transactions on Information Theory, 48, 2558–2567.MathSciNetCrossRef
18.
Zurück zum Zitat Candes, E., & Tao, T. (2006). Near optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions on Information Theory, 52(12), 5406–5425.MathSciNetCrossRef Candes, E., & Tao, T. (2006). Near optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions on Information Theory, 52(12), 5406–5425.MathSciNetCrossRef
19.
Zurück zum Zitat Candes, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.MathSciNetCrossRef Candes, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.MathSciNetCrossRef
20.
21.
Zurück zum Zitat Candes, E., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.MathSciNetCrossRef Candes, E., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.MathSciNetCrossRef
22.
Zurück zum Zitat Zhang, Y. (2008, July). On theory of compressed sensing via ℓ1-minimization: Simple derivations and extensions. CAAM Technical Report TR08-11, Department of Computational and Applied Mathematics, Rice University. Zhang, Y. (2008, July). On theory of compressed sensing via ℓ1-minimization: Simple derivations and extensions. CAAM Technical Report TR08-11, Department of Computational and Applied Mathematics, Rice University.
23.
Zurück zum Zitat Chen, S. S. (1995). Basis pursuit, Ph.D. thesis, Stanford University, Department of Statistics. Chen, S. S. (1995). Basis pursuit, Ph.D. thesis, Stanford University, Department of Statistics.
24.
Zurück zum Zitat Chen, S. S., Donoho, D. L., & Saunders, M. A. (2001). Atomic decomposition by basis pursuit. SIAM Review, 43(1), 129–159.MathSciNetCrossRef Chen, S. S., Donoho, D. L., & Saunders, M. A. (2001). Atomic decomposition by basis pursuit. SIAM Review, 43(1), 129–159.MathSciNetCrossRef
25.
Zurück zum Zitat Rudelson, M., & Vershynin, R. (2005). Geometric approach to error-correcting codes and reconstruction of signals. International Mathematics Research Notices, 64, 4019–4041.MathSciNetCrossRef Rudelson, M., & Vershynin, R. (2005). Geometric approach to error-correcting codes and reconstruction of signals. International Mathematics Research Notices, 64, 4019–4041.MathSciNetCrossRef
26.
Zurück zum Zitat Donoho, D., & Tanner, J. (2005). Neighborliness of randomly-projected simplices in high dimensions. Proceedings of the National Academy of Sciences, 102(27), 9452–9457.MathSciNetCrossRef Donoho, D., & Tanner, J. (2005). Neighborliness of randomly-projected simplices in high dimensions. Proceedings of the National Academy of Sciences, 102(27), 9452–9457.MathSciNetCrossRef
27.
Zurück zum Zitat Candles, E. J., Wakin, M. B., & Boyd, S. (2008). Enhancing sparsity by reweighted ℓ1 minimization. Journal of Fourier Analysis and Applications, 14(5), 877–905.MathSciNetCrossRef Candles, E. J., Wakin, M. B., & Boyd, S. (2008). Enhancing sparsity by reweighted ℓ1 minimization. Journal of Fourier Analysis and Applications, 14(5), 877–905.MathSciNetCrossRef
28.
Zurück zum Zitat Tropp, J. (2006). Just relax: Convex programming methods for identifying sparse signals. IEEE Transactions on Information Theory, 51, 1030–1051.MathSciNetCrossRef Tropp, J. (2006). Just relax: Convex programming methods for identifying sparse signals. IEEE Transactions on Information Theory, 51, 1030–1051.MathSciNetCrossRef
29.
Zurück zum Zitat Tsaig, Y., & Donoho, D. (2005). Extensions of compressed sensing. Signal Processing, 86(3), 533–548.CrossRef Tsaig, Y., & Donoho, D. (2005). Extensions of compressed sensing. Signal Processing, 86(3), 533–548.CrossRef
30.
Zurück zum Zitat Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268.MathSciNetCrossRef Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268.MathSciNetCrossRef
31.
Zurück zum Zitat Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20, 89–97.MathSciNetCrossRef Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20, 89–97.MathSciNetCrossRef
32.
Zurück zum Zitat Chan, T. F., Esedoglu, S., Park, F., & Yip, A. (2004). Recent developments in total variation image restoration. CAM Report 05-01, Department of Mathematics, UCLA. Chan, T. F., Esedoglu, S., Park, F., & Yip, A. (2004). Recent developments in total variation image restoration. CAM Report 05-01, Department of Mathematics, UCLA.
33.
Zurück zum Zitat Geman, D., & Reynolds, G. (1992). Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(3), 367–383.CrossRef Geman, D., & Reynolds, G. (1992). Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(3), 367–383.CrossRef
34.
Zurück zum Zitat Geman, D., & Yang, C. (1995). Nonlinear image recovery with half-quadratic regularization. IEEE Transactions on Image Processing, 4(7), 932–946.CrossRef Geman, D., & Yang, C. (1995). Nonlinear image recovery with half-quadratic regularization. IEEE Transactions on Image Processing, 4(7), 932–946.CrossRef
35.
Zurück zum Zitat Yang, J., Yin, W., Zhang, Y., & Wang, Y. A fast algorithm for edge-preserving variational multichannel image restoration. Technical Report 08-09, CAAM, Rice University, Submitted to SIIMS. Yang, J., Yin, W., Zhang, Y., & Wang, Y. A fast algorithm for edge-preserving variational multichannel image restoration. Technical Report 08-09, CAAM, Rice University, Submitted to SIIMS.
36.
Zurück zum Zitat Yang, J., Zhang, Y., & Yin, W. An efficient TVL1 algorithm for deblurring of multichannel images corrupted by impulsive noise. TR08-12, CAAM, Rice University, Submitted to SISC. Yang, J., Zhang, Y., & Yin, W. An efficient TVL1 algorithm for deblurring of multichannel images corrupted by impulsive noise. TR08-12, CAAM, Rice University, Submitted to SISC.
37.
Zurück zum Zitat Li, C. (2009). An efficient algorithm for total variation regularization with applications to the single pixel camera and compressed sensing. Li, C. (2009). An efficient algorithm for total variation regularization with applications to the single pixel camera and compressed sensing.
38.
Zurück zum Zitat Bregman, L. (1967). The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization. USSR Computational Mathematics and Mathematical Physics, 7, 200–217.CrossRef Bregman, L. (1967). The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization. USSR Computational Mathematics and Mathematical Physics, 7, 200–217.CrossRef
39.
Zurück zum Zitat Yin, W., Osher, S., Goldfarb, D., & Darbon, J. (2008). Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences, 1, 142–168.CrossRef Yin, W., Osher, S., Goldfarb, D., & Darbon, J. (2008). Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences, 1, 142–168.CrossRef
40.
Zurück zum Zitat Cai, J. F., Osher, S., & Shen, Z. Linearized Bregman iterations for compressed sensing. UCLA CAM Report, 08-06. Cai, J. F., Osher, S., & Shen, Z. Linearized Bregman iterations for compressed sensing. UCLA CAM Report, 08-06.
41.
Zurück zum Zitat Goldstein, T., & Osher, S. The Split Bregman method for L1 regularized problems. UCLA CAM Report, 08-29. Goldstein, T., & Osher, S. The Split Bregman method for L1 regularized problems. UCLA CAM Report, 08-29.
42.
Zurück zum Zitat Yin, W., & Osher, S. (2012). Error forgetting of Bregman iteration. Journal of Scientific Computing, 54(2), 684–698.MathSciNetMATH Yin, W., & Osher, S. (2012). Error forgetting of Bregman iteration. Journal of Scientific Computing, 54(2), 684–698.MathSciNetMATH
43.
Zurück zum Zitat Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2), 227–234.MathSciNetCrossRef Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2), 227–234.MathSciNetCrossRef
44.
Zurück zum Zitat Zhang, Y. (2009, May). User’s guide for YALL1: Your algorithms for L1 optimization. Technical Report TR09-17, Department of Computational and Applied Mathematics, Rice University. Zhang, Y. (2009, May). User’s guide for YALL1: Your algorithms for L1 optimization. Technical Report TR09-17, Department of Computational and Applied Mathematics, Rice University.
Metadaten
Titel
Compressed Sensing for Image Compression: Survey of Algorithms
verfasst von
S. K. Gunasheela
H. S. Prasantha
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-6001-5_42

Neuer Inhalt