2016 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Pursuit of the Universal
Recent work in reverse mathematics on combinatorial principles below Ramsey’s theorem for pairs has made use of a variety of computable reductions to give a finer analysis of the relationships between these principles. We use three concrete examples to illustrate this work, survey the known results and give new negative results concerning \(\mathsf {RT}^1_k\), \(\mathsf {SRT}^2_\ell \) and \(\mathsf {COH}\). Motivated by these examples, we introduce several variations of \(\mathsf {ADS}\) and describe the relationships between these principles under Weihrauch and strong Weihrauch reductions.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Astor, E.P., Dzhafarov, D.D., Solomon, R., Suggs, J.: The uniform content of partial and linear orders (in preparation) Astor, E.P., Dzhafarov, D.D., Solomon, R., Suggs, J.: The uniform content of partial and linear orders (in preparation)
2.
Zurück zum Zitat Cholak, P.A., Jockusch Jr., C.G., Slaman, T.A.: On the strength of Ramsey’s theorem for pairs. J. Symb. Log. 66, 1–55 (2001) MathSciNetCrossRefMATH Cholak, P.A., Jockusch Jr., C.G., Slaman, T.A.: On the strength of Ramsey’s theorem for pairs. J. Symb. Log.
66, 1–55 (2001)
MathSciNetCrossRefMATH
3.
Zurück zum Zitat Chong, C.T., Lempp, S., Yang, Y.: On the role of collection principles for \(\Sigma ^0_2\) formulas in second-order reverse mathematics. Proc. Am. Math. Soc. 138, 1093–1100 (2010) MathSciNetCrossRefMATH Chong, C.T., Lempp, S., Yang, Y.: On the role of collection principles for
\(\Sigma ^0_2\) formulas in second-order reverse mathematics. Proc. Am. Math. Soc.
138, 1093–1100 (2010)
MathSciNetCrossRefMATH
4.
Zurück zum Zitat Chong, C.T., Slaman, T.A., Yang, Y.: The metamathematics of stable Ramsey’s theorem for pairs. J. Am. Math Soc. 27, 863–892 (2014) MathSciNetCrossRefMATH Chong, C.T., Slaman, T.A., Yang, Y.: The metamathematics of stable Ramsey’s theorem for pairs. J. Am. Math Soc.
27, 863–892 (2014)
MathSciNetCrossRefMATH
5.
Zurück zum Zitat Dorais, F.G., Dzhafarov, D.D., Hirst, J.L., Mileti, J.R., Shafer, P.: On uniform relationships between combinatorial problems. Trans. Am. Math. Soc. 368(2), 1321–1359 (2016) MathSciNetCrossRefMATH Dorais, F.G., Dzhafarov, D.D., Hirst, J.L., Mileti, J.R., Shafer, P.: On uniform relationships between combinatorial problems. Trans. Am. Math. Soc.
368(2), 1321–1359 (2016)
MathSciNetCrossRefMATH
6.
Zurück zum Zitat Downey, R., Hirschfeldt, D.R., Lempp, S., Solomon, R.: A \(\Delta ^0_2\) set with no infinite low set in either it or its complement. J. Symb. Log. 66, 1371–1381 (2001) MathSciNetCrossRefMATH Downey, R., Hirschfeldt, D.R., Lempp, S., Solomon, R.: A
\(\Delta ^0_2\) set with no infinite low set in either it or its complement. J. Symb. Log.
66, 1371–1381 (2001)
MathSciNetCrossRefMATH
7.
Zurück zum Zitat Dzhafarov, D.D.: Strong reducibilities between combinatorial principles. J. Symb. Log. (to appear) Dzhafarov, D.D.: Strong reducibilities between combinatorial principles. J. Symb. Log. (to appear)
8.
Zurück zum Zitat Dzhafarov, D.D., Patey, L., Solomon, R., Westrick, L.B.: Ramsey’s theorem for singletons and strong computable reducibility (submitted) Dzhafarov, D.D., Patey, L., Solomon, R., Westrick, L.B.: Ramsey’s theorem for singletons and strong computable reducibility (submitted)
9.
Zurück zum Zitat Hirschfeldt, D.R., Jockusch Jr., C.G.: On notions of computability theoretic reduction between \(\Pi ^1_2\) principles. J. Math. Logic (to appear) Hirschfeldt, D.R., Jockusch Jr., C.G.: On notions of computability theoretic reduction between
\(\Pi ^1_2\) principles. J. Math. Logic (to appear)
10.
Zurück zum Zitat Hirschfeldt, D.R., Shore, R.A.: Combinatorial principles weaker than Ramsey’s theorem for pairs. J. Symb. Log. 72, 171–206 (2007) MathSciNetCrossRefMATH Hirschfeldt, D.R., Shore, R.A.: Combinatorial principles weaker than Ramsey’s theorem for pairs. J. Symb. Log.
72, 171–206 (2007)
MathSciNetCrossRefMATH
11.
Zurück zum Zitat Patey, L.: The weakness of being cohesive, thin or free in reverse mathematics. Isr. J. Math. (to appear) Patey, L.: The weakness of being cohesive, thin or free in reverse mathematics. Isr. J. Math. (to appear)
12.
Zurück zum Zitat Rakotoniaina, T.: The computational strength of Ramsey’s theorem. Ph.D. thesis, University of Cape Town (2015) Rakotoniaina, T.: The computational strength of Ramsey’s theorem. Ph.D. thesis, University of Cape Town (2015)
- Titel
- Computable Reductions and Reverse Mathematics
- DOI
- https://doi.org/10.1007/978-3-319-40189-8_19
- Autor:
-
Reed Solomon
- Sequenznummer
- 19