Skip to main content

2020 | OriginalPaper | Buchkapitel

7. Computational and Experimental Analysis of Carbon Functional Nanomaterials

verfasst von : Pitchaimani Veerakumar, Namasivayam Dhenadhayalan, King-Chuen Lin

Erschienen in: Theoretical Chemistry for Advanced Nanomaterials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Density functional theory (DFT) as one of molecular simulation techniques has been widely used to become rapidly a powerful tool for research and technology development for the past three decades. In particular, the DFT-based theoretical and fundamental knowledge have shed light on our understanding of the fundamental surface science, catalysis, sensors, materials science, and biology. Oxygen, nitrogen, boron, phosphorus, and sulfur are the most common heteroatoms introduced on the functional carbon nanomaterials surface with different surface functionalities. This book chapter aims to provide a pedagogical narrative of the DFT and relevant computational methods applied for surface chemistry, homogeneous/heterogeneous catalysis, and the fluorescence-based sensing properties of carbon nanomaterials. We overview several representative case studies associated with energy and chemicals production and discuss relevant principles of computationally driven carbon nanomaterials design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L.A. Curtiss, P.C. Redfern, K. Raghavachari, Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies. J. Chem. Phys. 123, 124107 (2005)PubMedCrossRef L.A. Curtiss, P.C. Redfern, K. Raghavachari, Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies. J. Chem. Phys. 123, 124107 (2005)PubMedCrossRef
2.
Zurück zum Zitat R.K. Raju, A. Ramraj, I.H. Hillier, M.A. Vincent, N.A. Burton, Carbohydrate-aromatic pi interactions: A test of density functionals and the DFT-D method. Phys. Chem. Chem. Phys. 11, 3411–3416 (2009)PubMedCrossRef R.K. Raju, A. Ramraj, I.H. Hillier, M.A. Vincent, N.A. Burton, Carbohydrate-aromatic pi interactions: A test of density functionals and the DFT-D method. Phys. Chem. Chem. Phys. 11, 3411–3416 (2009)PubMedCrossRef
3.
Zurück zum Zitat P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D.M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–801 (2016)PubMedCrossRef P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D.M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–801 (2016)PubMedCrossRef
4.
Zurück zum Zitat J.K. Nørskov, M. Scheffler, H. Toulhoat, Density functional theory in surface science and heterogeneous catalysis. MRS Bull. 31, 669–674 (2006)CrossRef J.K. Nørskov, M. Scheffler, H. Toulhoat, Density functional theory in surface science and heterogeneous catalysis. MRS Bull. 31, 669–674 (2006)CrossRef
5.
Zurück zum Zitat J.K. Norskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009)PubMedCrossRef J.K. Norskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009)PubMedCrossRef
6.
Zurück zum Zitat B.D. Dunnington, J.R. Schmidt, A projection-free method for representing plane-wave DFT results in an atom-centered basis. J. Chem. Phys. 143, 104109 (2015)PubMedCrossRef B.D. Dunnington, J.R. Schmidt, A projection-free method for representing plane-wave DFT results in an atom-centered basis. J. Chem. Phys. 143, 104109 (2015)PubMedCrossRef
7.
Zurück zum Zitat E.J. Bylaska, M. Valiev, R. Kawai, J.H. Weare, Parallel implementation of the projector augmented plane wave method for charged systems. Comput. Phys. Commun. 143, 11–28 (2002)CrossRef E.J. Bylaska, M. Valiev, R. Kawai, J.H. Weare, Parallel implementation of the projector augmented plane wave method for charged systems. Comput. Phys. Commun. 143, 11–28 (2002)CrossRef
8.
Zurück zum Zitat E.J. Bylaska, Plane-wave DFT methods for chemistry. Annu. Rep. Comput. Chem. 13, 185–228 (2017)CrossRef E.J. Bylaska, Plane-wave DFT methods for chemistry. Annu. Rep. Comput. Chem. 13, 185–228 (2017)CrossRef
9.
Zurück zum Zitat R. Das, N. Dhar, A. Bandyopadhyay, D. Jana, Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: A DFT study. J. Phys. Chem. Solids 99, 34–42 (2016)CrossRef R. Das, N. Dhar, A. Bandyopadhyay, D. Jana, Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: A DFT study. J. Phys. Chem. Solids 99, 34–42 (2016)CrossRef
10.
Zurück zum Zitat V. Cantatore, I. Panas, Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene. J. Chem. Phys. 144, 151102 (2016)PubMedCrossRef V. Cantatore, I. Panas, Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene. J. Chem. Phys. 144, 151102 (2016)PubMedCrossRef
11.
Zurück zum Zitat H.R. Jiang, T.S. Zhao, L. Shi, P. Tan, L. An, First-principles study of nitrogen-, boron-doped graphene and co-doped graphene as the potential catalysts in nonaqueous Li-O2 batteries. J. Phys. Chem. C 120, 6612–6618 (2016)CrossRef H.R. Jiang, T.S. Zhao, L. Shi, P. Tan, L. An, First-principles study of nitrogen-, boron-doped graphene and co-doped graphene as the potential catalysts in nonaqueous Li-O2 batteries. J. Phys. Chem. C 120, 6612–6618 (2016)CrossRef
12.
Zurück zum Zitat L. Ferrighi, M. Datteo, C. Di Valentin, Boosting graphene reactivity with oxygen by boron doping: Density functional theory modeling of the reaction path. J. Phys. Chem. C 118, 223–230 (2014)CrossRef L. Ferrighi, M. Datteo, C. Di Valentin, Boosting graphene reactivity with oxygen by boron doping: Density functional theory modeling of the reaction path. J. Phys. Chem. C 118, 223–230 (2014)CrossRef
13.
Zurück zum Zitat R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989) R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)
14.
Zurück zum Zitat W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, New York, 2001)CrossRef W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, New York, 2001)CrossRef
15.
Zurück zum Zitat Q. Liu, Z.S. Li, S.L. Chen, Metal-embedded graphene as potential counter electrode for dye-sensitized solar cell. Ind. Eng. Chem. Res. 55, 455–462 (2016)CrossRef Q. Liu, Z.S. Li, S.L. Chen, Metal-embedded graphene as potential counter electrode for dye-sensitized solar cell. Ind. Eng. Chem. Res. 55, 455–462 (2016)CrossRef
16.
Zurück zum Zitat X. Chen, F. Li, N. Zhang, L. An, D. Xia, Mechanism of oxygen reduction reaction catalyzed by Fe(Co)-Nx/C. Phys. Chem. Chem. Phys. 15, 19330–19336 (2013)PubMedCrossRef X. Chen, F. Li, N. Zhang, L. An, D. Xia, Mechanism of oxygen reduction reaction catalyzed by Fe(Co)-Nx/C. Phys. Chem. Chem. Phys. 15, 19330–19336 (2013)PubMedCrossRef
17.
Zurück zum Zitat W.B. Schneider, U. Benedikt, A.A. Auer, Interaction of platinum nanoparticles with graphitic carbon structures: A computational study. ChemPhysChem 14, 2984–2989 (2013)PubMedCrossRef W.B. Schneider, U. Benedikt, A.A. Auer, Interaction of platinum nanoparticles with graphitic carbon structures: A computational study. ChemPhysChem 14, 2984–2989 (2013)PubMedCrossRef
18.
Zurück zum Zitat J. Kang, J.S. Yu, B. Han, First-principles design of graphene based active catalysts for oxygen reduction and evolution reactions in the aprotic Li-O2 battery. J. Phys. Chem. Lett. 7, 2803–2808 (2016)PubMedCrossRef J. Kang, J.S. Yu, B. Han, First-principles design of graphene based active catalysts for oxygen reduction and evolution reactions in the aprotic Li-O2 battery. J. Phys. Chem. Lett. 7, 2803–2808 (2016)PubMedCrossRef
19.
Zurück zum Zitat S. Navalon, A. Dhakshinamoorthy, M. Alvaro, M. Antonietti, H. García, Active sites on graphene-based materials as metal-free catalysts. Chem. Soc. Rev. 46, 4501–4529 (2017)PubMedCrossRef S. Navalon, A. Dhakshinamoorthy, M. Alvaro, M. Antonietti, H. García, Active sites on graphene-based materials as metal-free catalysts. Chem. Soc. Rev. 46, 4501–4529 (2017)PubMedCrossRef
20.
Zurück zum Zitat X. Duan, Z. Ao, L. Zhou, H. Sun, G. Wang, S. Wang, Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Appl. Catal. B 188, 98–105 (2016)CrossRef X. Duan, Z. Ao, L. Zhou, H. Sun, G. Wang, S. Wang, Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Appl. Catal. B 188, 98–105 (2016)CrossRef
21.
Zurück zum Zitat J. Vazquez-Arenas, G. Ramos-Sanchez, A.A. Franco, A multiscale model of the oxygen reduction reaction on highly active graphene nanosheets in alkaline conditions. J. Power Sources 328, 492–502 (2016)CrossRef J. Vazquez-Arenas, G. Ramos-Sanchez, A.A. Franco, A multiscale model of the oxygen reduction reaction on highly active graphene nanosheets in alkaline conditions. J. Power Sources 328, 492–502 (2016)CrossRef
22.
Zurück zum Zitat S. Mussell, P. Choudhury, Density functional theory study of iron phthalocyanine porous layer deposited on graphene substrate: A Pt-free electrocatalyst for hydrogen fuel cells. J. Phys. Chem. C 120, 5384–5391 (2016)CrossRef S. Mussell, P. Choudhury, Density functional theory study of iron phthalocyanine porous layer deposited on graphene substrate: A Pt-free electrocatalyst for hydrogen fuel cells. J. Phys. Chem. C 120, 5384–5391 (2016)CrossRef
23.
Zurück zum Zitat X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, X. Bao, Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014)PubMedCrossRef X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, X. Bao, Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014)PubMedCrossRef
24.
Zurück zum Zitat R.S. Assary, P.C. Redfern, J.R. Hammond, J. Greeley, L.A. Curtiss, Computational studies of the thermochemistry for conversion of glucose to levulinic acid. J. Phys. Chem. B 114, 9002–9009 (2010)PubMedCrossRef R.S. Assary, P.C. Redfern, J.R. Hammond, J. Greeley, L.A. Curtiss, Computational studies of the thermochemistry for conversion of glucose to levulinic acid. J. Phys. Chem. B 114, 9002–9009 (2010)PubMedCrossRef
25.
Zurück zum Zitat L.A. Curtiss, P.C. Redfern, K. Raghavachari, Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 127, 124105 (2007)PubMedCrossRef L.A. Curtiss, P.C. Redfern, K. Raghavachari, Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 127, 124105 (2007)PubMedCrossRef
26.
Zurück zum Zitat G.I. Csonka, A.D. French, G.P. Johnson, C.A. Stortz, Evaluation of density functionals and basis sets for carbohydrates. J. Chem. Theory Comput. 5, 679–692 (2009)PubMedCrossRef G.I. Csonka, A.D. French, G.P. Johnson, C.A. Stortz, Evaluation of density functionals and basis sets for carbohydrates. J. Chem. Theory Comput. 5, 679–692 (2009)PubMedCrossRef
27.
Zurück zum Zitat S. Bertelsen, K.A. Jørgensen, Organocatalysis-after the gold rush. Chem. Soc. Rev. 38, 2178–2189 (2009)PubMedCrossRef S. Bertelsen, K.A. Jørgensen, Organocatalysis-after the gold rush. Chem. Soc. Rev. 38, 2178–2189 (2009)PubMedCrossRef
28.
Zurück zum Zitat O. Mohammadi, M. Golestanzadeh, M. Abdouss, Recent advances in organic reactions catalyzed by graphene oxide and sulfonated graphene as heterogeneous nanocatalysts: A review. New J. Chem. 41, 11471–11497 (2017)CrossRef O. Mohammadi, M. Golestanzadeh, M. Abdouss, Recent advances in organic reactions catalyzed by graphene oxide and sulfonated graphene as heterogeneous nanocatalysts: A review. New J. Chem. 41, 11471–11497 (2017)CrossRef
29.
Zurück zum Zitat D.V. Boukhvalov, D.R. Dreyer, C.W. Bielawski, Y.-W. Soon, A computational investigation of the catalytic properties of graphene oxide: Exploring mechanisms by using DFT methods. ChemCatChem 4, 1844–1849 (2012)CrossRef D.V. Boukhvalov, D.R. Dreyer, C.W. Bielawski, Y.-W. Soon, A computational investigation of the catalytic properties of graphene oxide: Exploring mechanisms by using DFT methods. ChemCatChem 4, 1844–1849 (2012)CrossRef
30.
Zurück zum Zitat V.S. Jeyaraj, M. Kamaraj, V. Subramanian, Generalized reaction mechanism for the selective aerobic oxidation of aryl and alkyl alcohols over nitrogen-doped graphene. J. Phys. Chem. C 119, 26438–26450 (2015)CrossRef V.S. Jeyaraj, M. Kamaraj, V. Subramanian, Generalized reaction mechanism for the selective aerobic oxidation of aryl and alkyl alcohols over nitrogen-doped graphene. J. Phys. Chem. C 119, 26438–26450 (2015)CrossRef
31.
Zurück zum Zitat B. Dai, K. Chen, Y. Wang, L. Kang, M. Zhu, Boron and nitrogen doping in graphene for the catalysis of acetylene hydrochlorination. ACS Catal. 5, 2541–2547 (2015)CrossRef B. Dai, K. Chen, Y. Wang, L. Kang, M. Zhu, Boron and nitrogen doping in graphene for the catalysis of acetylene hydrochlorination. ACS Catal. 5, 2541–2547 (2015)CrossRef
32.
Zurück zum Zitat H. Yang, X. Cui, X. Dai, Y. Deng, F. Shi, Carbon-catalysed reductive hydrogen atom transfer reactions. Nat. Commun. 6, 6478 (2015)PubMedCrossRef H. Yang, X. Cui, X. Dai, Y. Deng, F. Shi, Carbon-catalysed reductive hydrogen atom transfer reactions. Nat. Commun. 6, 6478 (2015)PubMedCrossRef
33.
Zurück zum Zitat D.R. Dreyer, C.W. Bielawski, Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2, 1233–1240 (2011)CrossRef D.R. Dreyer, C.W. Bielawski, Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2, 1233–1240 (2011)CrossRef
34.
Zurück zum Zitat X. Wu, Z. Xie, M. Sun, T. Lei, Z. Zuo, X. Xie, Y. Liang, Q. Huang, Edge-rich and (N, S)-doped 3D porous graphene as an efficient metal-free electrocatalyst for the oxygen reduction reaction. RSC Adv. 6, 90384–90387 (2016)CrossRef X. Wu, Z. Xie, M. Sun, T. Lei, Z. Zuo, X. Xie, Y. Liang, Q. Huang, Edge-rich and (N, S)-doped 3D porous graphene as an efficient metal-free electrocatalyst for the oxygen reduction reaction. RSC Adv. 6, 90384–90387 (2016)CrossRef
35.
Zurück zum Zitat Y. Zhao, S. Huang, M. Xia, S. Rehman, S. Mu, Z. Kou, Z. Zhang, Z. Chen, F. Gao, Y. Hou, N-P-O co-doped high performance 3D graphene prepared through red phosphorous-assisted “cutting-thin” technique: A universal synthesis and multifunctional applications. Nano Energy 28, 346–355 (2016)CrossRef Y. Zhao, S. Huang, M. Xia, S. Rehman, S. Mu, Z. Kou, Z. Zhang, Z. Chen, F. Gao, Y. Hou, N-P-O co-doped high performance 3D graphene prepared through red phosphorous-assisted “cutting-thin” technique: A universal synthesis and multifunctional applications. Nano Energy 28, 346–355 (2016)CrossRef
36.
Zurück zum Zitat H. Wang, K. Sun, F. Tao, D.J. Stacchiola, Y.H. Hu, 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew. Chem. Int. Ed. 52, 9210–9214 (2013)CrossRef H. Wang, K. Sun, F. Tao, D.J. Stacchiola, Y.H. Hu, 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew. Chem. Int. Ed. 52, 9210–9214 (2013)CrossRef
37.
Zurück zum Zitat D. Deng, L. Yu, X. Pan, X. Wang, X. Chen, P. Hu, L. Sun, X. Bao, Size effect of graphene on electrocatalytic activation of oxygen. Chem. Commun. 47, 10016–10018 (2011)CrossRef D. Deng, L. Yu, X. Pan, X. Wang, X. Chen, P. Hu, L. Sun, X. Bao, Size effect of graphene on electrocatalytic activation of oxygen. Chem. Commun. 47, 10016–10018 (2011)CrossRef
38.
Zurück zum Zitat D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016)PubMedCrossRef D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016)PubMedCrossRef
39.
Zurück zum Zitat F. Yang, D. Deng, X. Pan, Q. Fu, X. Bao, Understanding nano effects in catalysis. Natl. Sci. Rev. 2, 183–201 (2015)CrossRef F. Yang, D. Deng, X. Pan, Q. Fu, X. Bao, Understanding nano effects in catalysis. Natl. Sci. Rev. 2, 183–201 (2015)CrossRef
40.
Zurück zum Zitat W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley VCH, Weinheim, 2001)CrossRef W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley VCH, Weinheim, 2001)CrossRef
41.
Zurück zum Zitat W. Kohn, Nobel lecture: Electronic structure of matter–wave functions and density functionals. Rev. Mod. Phys. 71, 1253 (1998)CrossRef W. Kohn, Nobel lecture: Electronic structure of matter–wave functions and density functionals. Rev. Mod. Phys. 71, 1253 (1998)CrossRef
42.
Zurück zum Zitat R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689 (1989)CrossRef R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689 (1989)CrossRef
43.
Zurück zum Zitat P. Veerakumar, P. Thanasekaran, K.-L. Lu, K.-C. Lin, S. Rajagopal, Computational studies of versatile heterogeneous palladium catalyzed Suzuki, Heck, and Sonogashira coupling reactions. ACS Sustain. Chem. Eng. 5, 8475–8490 (2017)CrossRef P. Veerakumar, P. Thanasekaran, K.-L. Lu, K.-C. Lin, S. Rajagopal, Computational studies of versatile heterogeneous palladium catalyzed Suzuki, Heck, and Sonogashira coupling reactions. ACS Sustain. Chem. Eng. 5, 8475–8490 (2017)CrossRef
44.
Zurück zum Zitat V.V. Welborn, L.R. Pestana, T. Head-Gordon, Computational optimization of electric fields for better catalysis design. Nat. Catal. 1, 649–655 (2018)CrossRef V.V. Welborn, L.R. Pestana, T. Head-Gordon, Computational optimization of electric fields for better catalysis design. Nat. Catal. 1, 649–655 (2018)CrossRef
45.
Zurück zum Zitat B. Liu, H. Li, X. Ma, R. Chen, S. Wang, L. Li, The synergistic effect of oxygen-containing functional groups on CO2 adsorption by the glucose–potassium citrate-derived activated carbon. RSC Adv. 8, 38965–38973 (2018)PubMedPubMedCentral B. Liu, H. Li, X. Ma, R. Chen, S. Wang, L. Li, The synergistic effect of oxygen-containing functional groups on CO2 adsorption by the glucose–potassium citrate-derived activated carbon. RSC Adv. 8, 38965–38973 (2018)PubMedPubMedCentral
46.
Zurück zum Zitat G. Lim, K.B. Lee, H.C. Ham, Effect of N-containing functional groups on CO2 adsorption of carbonaceous materials: A density functional theory approach. J. Phys. Chem. C 120, 8087–8095 (2016)CrossRef G. Lim, K.B. Lee, H.C. Ham, Effect of N-containing functional groups on CO2 adsorption of carbonaceous materials: A density functional theory approach. J. Phys. Chem. C 120, 8087–8095 (2016)CrossRef
47.
Zurück zum Zitat S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)PubMedCrossRef S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)PubMedCrossRef
48.
Zurück zum Zitat X. Wang, Y. Liu, X. Ma, S.K. Das, M. Ostwal, I. Gadwal, K. Yao, X. Dong, Y. Han, I. Pinnau, Soluble polymers with intrinsic porosity for flue gas purification and natural gas upgrading. Adv. Mater. 29, 1605826 (2017)CrossRef X. Wang, Y. Liu, X. Ma, S.K. Das, M. Ostwal, I. Gadwal, K. Yao, X. Dong, Y. Han, I. Pinnau, Soluble polymers with intrinsic porosity for flue gas purification and natural gas upgrading. Adv. Mater. 29, 1605826 (2017)CrossRef
49.
Zurück zum Zitat P. Geerlings, F. De Proft, W. Langenaeker, Conceptual density functional theory. Chem. Rev. 103, 1793–1874 (2003)PubMedCrossRef P. Geerlings, F. De Proft, W. Langenaeker, Conceptual density functional theory. Chem. Rev. 103, 1793–1874 (2003)PubMedCrossRef
50.
Zurück zum Zitat A. Zangwill, The education of Walter Kohn and the creation of density functional theory. Arch. Hist. Exact Sci. 68, 775–848 (2014)CrossRef A. Zangwill, The education of Walter Kohn and the creation of density functional theory. Arch. Hist. Exact Sci. 68, 775–848 (2014)CrossRef
51.
Zurück zum Zitat R.O. Jones, Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015)CrossRef R.O. Jones, Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015)CrossRef
52.
Zurück zum Zitat E. Furimsky, Graphene-derived supports for hydroprocessing catalysts. Ind. Eng. Chem. Res. 56, 11359–11371 (2017)CrossRef E. Furimsky, Graphene-derived supports for hydroprocessing catalysts. Ind. Eng. Chem. Res. 56, 11359–11371 (2017)CrossRef
53.
Zurück zum Zitat B.C. Thompson, E. Murray, G.G. Wallace, Graphite oxide to graphene. Biomaterials to bionics. Adv. Mater. 27, 7563–7582 (2015)PubMedCrossRef B.C. Thompson, E. Murray, G.G. Wallace, Graphite oxide to graphene. Biomaterials to bionics. Adv. Mater. 27, 7563–7582 (2015)PubMedCrossRef
54.
Zurück zum Zitat Z. Huang, H. Zhou, W. Yang, C. Fu, L. Chen, Y. Kuang, Three-dimensional hierarchical porous nitrogen and sulfur-codoped graphene nanosheets for oxygen reduction in both alkaline and acidic media. ChemCatChem 9, 987–996 (2017)CrossRef Z. Huang, H. Zhou, W. Yang, C. Fu, L. Chen, Y. Kuang, Three-dimensional hierarchical porous nitrogen and sulfur-codoped graphene nanosheets for oxygen reduction in both alkaline and acidic media. ChemCatChem 9, 987–996 (2017)CrossRef
55.
Zurück zum Zitat I. Shimoyama, Y. Baba, Thiophene adsorption on phosphorus and nitrogen-doped graphites: Control of desulfurization properties of carbon materials by heteroatom doping. Carbon 98, 115–125 (2016)CrossRef I. Shimoyama, Y. Baba, Thiophene adsorption on phosphorus and nitrogen-doped graphites: Control of desulfurization properties of carbon materials by heteroatom doping. Carbon 98, 115–125 (2016)CrossRef
56.
Zurück zum Zitat M. Gomez-Martínez, A. Baeza, D.A. Alonso, Pinacol rearrangement and direct nucleophilic substitution of allylic alcohols promoted by graphene oxide and graphene oxide CO2H. ChemCatChem 9, 1032–1039 (2017)CrossRef M. Gomez-Martínez, A. Baeza, D.A. Alonso, Pinacol rearrangement and direct nucleophilic substitution of allylic alcohols promoted by graphene oxide and graphene oxide CO2H. ChemCatChem 9, 1032–1039 (2017)CrossRef
57.
Zurück zum Zitat H. Ahmad, M. Fan, D. Hui, Graphene oxide incorporated functional materials: A review. Compos. Part B 145, 270–280 (2018)CrossRef H. Ahmad, M. Fan, D. Hui, Graphene oxide incorporated functional materials: A review. Compos. Part B 145, 270–280 (2018)CrossRef
58.
Zurück zum Zitat S. Ren, P. Rong, Q. Yu, Preparations, properties and applications of graphene in functional devices: A concise review. Ceram. Int. 44, 11940–11955 (2018)CrossRef S. Ren, P. Rong, Q. Yu, Preparations, properties and applications of graphene in functional devices: A concise review. Ceram. Int. 44, 11940–11955 (2018)CrossRef
59.
Zurück zum Zitat M. Sun, J. Li, Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today 20, 121–137 (2018)CrossRef M. Sun, J. Li, Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today 20, 121–137 (2018)CrossRef
60.
Zurück zum Zitat L. Zhang, Q. Xu, J. Niu, Z. Xia, Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Phys. Chem. Chem. Phys. 17, 16733–16743 (2015)PubMedCrossRef L. Zhang, Q. Xu, J. Niu, Z. Xia, Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Phys. Chem. Chem. Phys. 17, 16733–16743 (2015)PubMedCrossRef
61.
Zurück zum Zitat Z. Zhao, M. Li, L. Zhang, L. Dai, Z. Xia, Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries. Adv. Mater. 27, 6834–6840 (2015)PubMedCrossRef Z. Zhao, M. Li, L. Zhang, L. Dai, Z. Xia, Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries. Adv. Mater. 27, 6834–6840 (2015)PubMedCrossRef
62.
Zurück zum Zitat Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014)PubMedCrossRef Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014)PubMedCrossRef
63.
Zurück zum Zitat C.J. Paez, A.L.C. Pereira, J.N.B. Rodrigues, N.M.R. Peres, Electronic transport across linear defects in graphene. Phys. Rev. B–Condens. Matter Mater. Phys. 92, 045426 (2015)CrossRef C.J. Paez, A.L.C. Pereira, J.N.B. Rodrigues, N.M.R. Peres, Electronic transport across linear defects in graphene. Phys. Rev. B–Condens. Matter Mater. Phys. 92, 045426 (2015)CrossRef
64.
Zurück zum Zitat L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115, 11170–11176 (2011)CrossRef L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115, 11170–11176 (2011)CrossRef
65.
Zurück zum Zitat G.L. Tian, M.Q. Zhao, D. Yu, X.Y. Kong, J.Q. Huang, Q. Zhang, F. Wei, Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 10, 2251–2259 (2014)PubMedCrossRef G.L. Tian, M.Q. Zhao, D. Yu, X.Y. Kong, J.Q. Huang, Q. Zhang, F. Wei, Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 10, 2251–2259 (2014)PubMedCrossRef
66.
Zurück zum Zitat C.L. Su, K.P. Loh, Carbocatalysts: Graphene oxide and its derivatives. Acc. Chem. Res. 46, 2275–2285 (2013)PubMedCrossRef C.L. Su, K.P. Loh, Carbocatalysts: Graphene oxide and its derivatives. Acc. Chem. Res. 46, 2275–2285 (2013)PubMedCrossRef
67.
Zurück zum Zitat L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5, 7936–7942 (2012)CrossRef L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5, 7936–7942 (2012)CrossRef
68.
Zurück zum Zitat B.F. Machado, P. Serp, Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012)CrossRef B.F. Machado, P. Serp, Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012)CrossRef
69.
Zurück zum Zitat D.R. Dreyer, H.P. Jia, C.W. Bielawski, Graphene oxide: A convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813–6816 (2010) D.R. Dreyer, H.P. Jia, C.W. Bielawski, Graphene oxide: A convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813–6816 (2010)
70.
Zurück zum Zitat H.P. Jia, D.R. Dreyer, C.W. Bielawski, C-H oxidation using graphite oxide. Tetrahedron 67, 4431–4434 (2011)CrossRef H.P. Jia, D.R. Dreyer, C.W. Bielawski, C-H oxidation using graphite oxide. Tetrahedron 67, 4431–4434 (2011)CrossRef
71.
Zurück zum Zitat X.Y. Sun, P. Han, B. Li, S.J. Mao, T.F. Liu, S. Ali, Z. Lian, D.S. Su, Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: A computational account. Chem. Commun. 54, 864–875 (2018)CrossRef X.Y. Sun, P. Han, B. Li, S.J. Mao, T.F. Liu, S. Ali, Z. Lian, D.S. Su, Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: A computational account. Chem. Commun. 54, 864–875 (2018)CrossRef
72.
Zurück zum Zitat X. Liu, B. Frank, W. Zhang, T.P. Cotter, R. Schlögl, D.S. Su, Carbon-catalyzed oxidative dehydrogenation of n-butane: Selective site formation during sp 3-to-sp 2 lattice rearrangement. Angew. Chem. Int. Ed. 50, 3318–3332 (2011)CrossRef X. Liu, B. Frank, W. Zhang, T.P. Cotter, R. Schlögl, D.S. Su, Carbon-catalyzed oxidative dehydrogenation of n-butane: Selective site formation during sp 3-to-sp 2 lattice rearrangement. Angew. Chem. Int. Ed. 50, 3318–3332 (2011)CrossRef
73.
Zurück zum Zitat L. Roldan, A.M. Benito, E. Garcıa-Bordeje, Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation. J. Mater. Chem. A 3, 24379–24388 (2015)CrossRef L. Roldan, A.M. Benito, E. Garcıa-Bordeje, Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation. J. Mater. Chem. A 3, 24379–24388 (2015)CrossRef
74.
Zurück zum Zitat B. Frank, R. Blume, A. Rinaldi, A. Trunschke, R. Schlögl, Oxygen insertion catalysis by sp 2 carbon. Angew. Chem. Int. Ed. 50, 10226–10230 (2011)CrossRef B. Frank, R. Blume, A. Rinaldi, A. Trunschke, R. Schlögl, Oxygen insertion catalysis by sp 2 carbon. Angew. Chem. Int. Ed. 50, 10226–10230 (2011)CrossRef
75.
Zurück zum Zitat O.V. Khavryuchenko, B. Frank, A. Trunschke, K. Hermann, R. Schlögl, Quantum-chemical investigation of hydrocarbon oxidative dehydrogenation over spin-active carbon catalyst clusters. J. Phys. Chem. C 117, 6225–6234 (2013)CrossRef O.V. Khavryuchenko, B. Frank, A. Trunschke, K. Hermann, R. Schlögl, Quantum-chemical investigation of hydrocarbon oxidative dehydrogenation over spin-active carbon catalyst clusters. J. Phys. Chem. C 117, 6225–6234 (2013)CrossRef
76.
Zurück zum Zitat S. Ni, Z. Li, J. Yang, Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping. Nanoscale 4, 1184–1189 (2012)PubMedCrossRef S. Ni, Z. Li, J. Yang, Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping. Nanoscale 4, 1184–1189 (2012)PubMedCrossRef
77.
Zurück zum Zitat S.B. Tang, Z.X. Cao, Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Phys. Chem. Chem. Phys. 14, 16558–16565 (2012)PubMedCrossRef S.B. Tang, Z.X. Cao, Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Phys. Chem. Chem. Phys. 14, 16558–16565 (2012)PubMedCrossRef
78.
Zurück zum Zitat L. Favaretto, J. An, M. Sambo, A.D. Nisi, C. Bettini, M. Melucci, A. Kovtun, A. Liscio, V. Palermo, A. Bottoni, F. Zerbetto, M. Calvaresi, M. Bandini, Graphene oxide promotes site-selective allylic alkylation of thiophenes with alcohols. Org. Lett. 20, 3705–3709 (2018)PubMedCrossRef L. Favaretto, J. An, M. Sambo, A.D. Nisi, C. Bettini, M. Melucci, A. Kovtun, A. Liscio, V. Palermo, A. Bottoni, F. Zerbetto, M. Calvaresi, M. Bandini, Graphene oxide promotes site-selective allylic alkylation of thiophenes with alcohols. Org. Lett. 20, 3705–3709 (2018)PubMedCrossRef
79.
Zurück zum Zitat C. Su, M. Acik, K. Takai, J. Lu, S.-J. Hao, Y. Zheng, P. Wu, Q. Bao, T. Enoki, Y.J. Chabal, K.P. Loh, Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat. Commun. 3, 1298 (2012)PubMedCrossRef C. Su, M. Acik, K. Takai, J. Lu, S.-J. Hao, Y. Zheng, P. Wu, Q. Bao, T. Enoki, Y.J. Chabal, K.P. Loh, Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat. Commun. 3, 1298 (2012)PubMedCrossRef
80.
Zurück zum Zitat Q. Gu, G. Wen, Y. Ding, K.-H. Wu, C. Chen, D. Su, Reduced graphene oxide: A metal-free catalyst for aerobic oxidative desulfurization. Green Chem. 19, 1175–1181 (2017)CrossRef Q. Gu, G. Wen, Y. Ding, K.-H. Wu, C. Chen, D. Su, Reduced graphene oxide: A metal-free catalyst for aerobic oxidative desulfurization. Green Chem. 19, 1175–1181 (2017)CrossRef
81.
82.
Zurück zum Zitat Y. Gao, G. Hu, J. Zhong, Z. Shi, Y. Zhu, D.S. Su, J. Wang, X. Bao, D. Ma, Nitrogen-doped sp 2-hybridized carbon as a superior catalyst for selective oxidation. Angew. Chem. Int. Ed. 52, 2109–2113 (2013)CrossRef Y. Gao, G. Hu, J. Zhong, Z. Shi, Y. Zhu, D.S. Su, J. Wang, X. Bao, D. Ma, Nitrogen-doped sp 2-hybridized carbon as a superior catalyst for selective oxidation. Angew. Chem. Int. Ed. 52, 2109–2113 (2013)CrossRef
83.
Zurück zum Zitat Y. Gao, P. Tang, H. Zhou, W. Zhang, H. Yang, N. Yan, G. Hu, D. Mei, J. Wang, D. Ma, Graphene oxide catalyzed C-H bond activation: The importance of oxygen functional groups for biaryl construction. Angew. Chem. Int. Ed. 55, 3124–3128 (2016)CrossRef Y. Gao, P. Tang, H. Zhou, W. Zhang, H. Yang, N. Yan, G. Hu, D. Mei, J. Wang, D. Ma, Graphene oxide catalyzed C-H bond activation: The importance of oxygen functional groups for biaryl construction. Angew. Chem. Int. Ed. 55, 3124–3128 (2016)CrossRef
84.
Zurück zum Zitat J.H. Yang, Y.J. Gao, W. Zhang, P. Tang, J. Tan, A.H. Lu, D. Ma, Cobalt phthalocyanine–graphene oxide nanocomposite: Complicated mutual electronic interaction. J. Phys. Chem. C 117, 3785–3788 (2013)CrossRef J.H. Yang, Y.J. Gao, W. Zhang, P. Tang, J. Tan, A.H. Lu, D. Ma, Cobalt phthalocyanine–graphene oxide nanocomposite: Complicated mutual electronic interaction. J. Phys. Chem. C 117, 3785–3788 (2013)CrossRef
85.
Zurück zum Zitat P. Veerakumar, P. Thanasekaran, K.-C. Lin, S.-B. Liu, Well-dispersed rhenium nanoparticles on three-dimensional carbon nanostructures: Efficient catalysts for the reduction of aromatic nitro compounds. J. Colloid Interface Sci. 506, 271–282 (2017)PubMedCrossRef P. Veerakumar, P. Thanasekaran, K.-C. Lin, S.-B. Liu, Well-dispersed rhenium nanoparticles on three-dimensional carbon nanostructures: Efficient catalysts for the reduction of aromatic nitro compounds. J. Colloid Interface Sci. 506, 271–282 (2017)PubMedCrossRef
86.
Zurück zum Zitat X.X. Chen, B.L. Chen, Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environ. Sci. Technol. 49, 6181–6189 (2015)PubMedCrossRef X.X. Chen, B.L. Chen, Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environ. Sci. Technol. 49, 6181–6189 (2015)PubMedCrossRef
87.
Zurück zum Zitat Y.J. Gao, D. Ma, C.L. Wang, J. Guan, X.H. Bao, Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun. 47, 2432–2434 (2011)CrossRef Y.J. Gao, D. Ma, C.L. Wang, J. Guan, X.H. Bao, Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun. 47, 2432–2434 (2011)CrossRef
88.
Zurück zum Zitat T. Lv, S.B. Wu, H. Hong, L. Chen, R.J. Dong, Dynamics of nitrobenzene degradation and interactions with nitrogen transformations in laboratory-scale constructed wetlands. Bioresour. Technol. 133, 529–536 (2013)PubMedCrossRef T. Lv, S.B. Wu, H. Hong, L. Chen, R.J. Dong, Dynamics of nitrobenzene degradation and interactions with nitrogen transformations in laboratory-scale constructed wetlands. Bioresour. Technol. 133, 529–536 (2013)PubMedCrossRef
89.
Zurück zum Zitat N. Pradhan, A. Pal, T. Pal, Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf. A Physicochem. Eng. Asp. 196, 247–257 (2002)CrossRef N. Pradhan, A. Pal, T. Pal, Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf. A Physicochem. Eng. Asp. 196, 247–257 (2002)CrossRef
90.
Zurück zum Zitat X. Kong, Z. Sun, M. Chen, C. Chen, Q. Chen, Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N doped graphene. Energy Environ. Sci. 6, 3260–3266 (2013)CrossRef X. Kong, Z. Sun, M. Chen, C. Chen, Q. Chen, Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N doped graphene. Energy Environ. Sci. 6, 3260–3266 (2013)CrossRef
91.
Zurück zum Zitat L. Li, Q. Liu, Y.-X. Wang, H.-Q. Zhao, C.-S. He, H.-Y. Yang, L. Gong, Y. Mu, H.-Q. Yu, Facilitated biological reduction of nitroaromatic compounds by reduced graphene oxide and the role of its surface characteristics. Sci. Rep. 6, 30082 (2016)PubMedPubMedCentralCrossRef L. Li, Q. Liu, Y.-X. Wang, H.-Q. Zhao, C.-S. He, H.-Y. Yang, L. Gong, Y. Mu, H.-Q. Yu, Facilitated biological reduction of nitroaromatic compounds by reduced graphene oxide and the role of its surface characteristics. Sci. Rep. 6, 30082 (2016)PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Z.M. Summers, H.E. Fogarty, C. Leang, A.E. Franks, N.S. Malvankar, D.R. Lovley, Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415 (2010)PubMedCrossRef Z.M. Summers, H.E. Fogarty, C. Leang, A.E. Franks, N.S. Malvankar, D.R. Lovley, Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415 (2010)PubMedCrossRef
93.
Zurück zum Zitat F. Liu, A.-E. Rotaru, P.M. Shrestha, N.S. Malvankar, K.P. Nevin, D.R. Lovleya, Promoting direct interspecies electron transfer with activated carbon. Energy Environ. Sci. 5, 8982–8989 (2012)CrossRef F. Liu, A.-E. Rotaru, P.M. Shrestha, N.S. Malvankar, K.P. Nevin, D.R. Lovleya, Promoting direct interspecies electron transfer with activated carbon. Energy Environ. Sci. 5, 8982–8989 (2012)CrossRef
94.
Zurück zum Zitat L. Borchardt, Q.-L. Zhu, M.E. Casco, R. Berger, X. Zhuang, S. Kaskel, X. Feng, Q. Xu, Toward a molecular design of porous carbon materials. Mater. Today 20, 592–610 (2017)CrossRef L. Borchardt, Q.-L. Zhu, M.E. Casco, R. Berger, X. Zhuang, S. Kaskel, X. Feng, Q. Xu, Toward a molecular design of porous carbon materials. Mater. Today 20, 592–610 (2017)CrossRef
95.
Zurück zum Zitat J.L. Figueiredo, Functionalization of porous carbons for catalytic applications. J. Mater. Chem. A 1, 9351–9364 (2013)CrossRef J.L. Figueiredo, Functionalization of porous carbons for catalytic applications. J. Mater. Chem. A 1, 9351–9364 (2013)CrossRef
96.
Zurück zum Zitat D.S. Su, J. Zhang, B. Frank, A. Thomas, X. Wang, J. Paraknowitsch, R. Schlçgl, Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 3, 169–180 (2010)PubMedCrossRef D.S. Su, J. Zhang, B. Frank, A. Thomas, X. Wang, J. Paraknowitsch, R. Schlçgl, Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 3, 169–180 (2010)PubMedCrossRef
97.
Zurück zum Zitat M.R. Benzigar, S.N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, A. Vinu, Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications. Chem. Soc. Rev. 47, 2680–2721 (2018)PubMedCrossRef M.R. Benzigar, S.N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, A. Vinu, Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications. Chem. Soc. Rev. 47, 2680–2721 (2018)PubMedCrossRef
98.
Zurück zum Zitat S. Xiaoyan, W. Rui, S. Dangsheng, Research progress in metal-free carbon-based catalysts. Chin. J. Catal. 34, 508–523 (2013)CrossRef S. Xiaoyan, W. Rui, S. Dangsheng, Research progress in metal-free carbon-based catalysts. Chin. J. Catal. 34, 508–523 (2013)CrossRef
99.
Zurück zum Zitat J. Wang, H. Liu, X. Gu, H. Wang, D.S. Su, Synthesis of nitrogen-containing ordered mesoporous carbon as a metal-free catalyst for selective oxidation of ethylbenzene. Chem. Commun. 50, 9182–9184 (2014)CrossRef J. Wang, H. Liu, X. Gu, H. Wang, D.S. Su, Synthesis of nitrogen-containing ordered mesoporous carbon as a metal-free catalyst for selective oxidation of ethylbenzene. Chem. Commun. 50, 9182–9184 (2014)CrossRef
100.
Zurück zum Zitat I. Matos, M. Bernardo, I. Fonseca, Porous carbon: A versatile material for catalysis. Catal. Today 285, 194–203 (2017)CrossRef I. Matos, M. Bernardo, I. Fonseca, Porous carbon: A versatile material for catalysis. Catal. Today 285, 194–203 (2017)CrossRef
101.
Zurück zum Zitat S.S. Barton, M.J.B. Evans, E. Halliop, J.A.F. Macdonald, Acidic and basic sites on the surface of porous carbon. Carbon 35, 1361–1366 (1997)CrossRef S.S. Barton, M.J.B. Evans, E. Halliop, J.A.F. Macdonald, Acidic and basic sites on the surface of porous carbon. Carbon 35, 1361–1366 (1997)CrossRef
102.
Zurück zum Zitat A. Stergiou, N. Karousis, D.T. Dimitratos, Metal-Free Functionalized Carbons in Catalysis Synthesis, Characterization and Applications, in Non-covalent Methodologies for the Preparation of Metal-Free Nanocarbons for Catalysis, (The Royal Society of Chemistry, Cambridge, 2018), pp. 29–66;. ISBN 978-1-78262-863-7 A. Stergiou, N. Karousis, D.T. Dimitratos, Metal-Free Functionalized Carbons in Catalysis Synthesis, Characterization and Applications, in Non-covalent Methodologies for the Preparation of Metal-Free Nanocarbons for Catalysis, (The Royal Society of Chemistry, Cambridge, 2018), pp. 29–66;. ISBN 978-1-78262-863-7
103.
Zurück zum Zitat P. Serp, B. Machado, Nanostructured Carbon Materials for Catalysis (The Royal Society of Chemistry, Cambridge,. ISSN 1757–6725, 2015) P. Serp, B. Machado, Nanostructured Carbon Materials for Catalysis (The Royal Society of Chemistry, Cambridge,. ISSN 1757–6725, 2015)
104.
Zurück zum Zitat M. Naderi, Chapter 14: Surface Area: Brunauer–Emmett–Teller (BET), in Progress in Filtration and Separation, ed. by S. Tarleton, (Academic, London, 2015), pp. 585–608CrossRef M. Naderi, Chapter 14: Surface Area: Brunauer–Emmett–Teller (BET), in Progress in Filtration and Separation, ed. by S. Tarleton, (Academic, London, 2015), pp. 585–608CrossRef
105.
Zurück zum Zitat P. Tang, G. Hu, M. Li, D. Ma, Graphene-based metal-free catalysts for catalytic reactions in the liquid phase. ACS Catal. 6, 6948–6958 (2016)CrossRef P. Tang, G. Hu, M. Li, D. Ma, Graphene-based metal-free catalysts for catalytic reactions in the liquid phase. ACS Catal. 6, 6948–6958 (2016)CrossRef
106.
Zurück zum Zitat X. Li, J. Zhang, W. Li, MOF-derived nitrogen-doped porous carbon as metal-free catalysts for acetylene hydrochlorination. J. Ind. Eng. Chem. 44, 146–154 (2016)CrossRef X. Li, J. Zhang, W. Li, MOF-derived nitrogen-doped porous carbon as metal-free catalysts for acetylene hydrochlorination. J. Ind. Eng. Chem. 44, 146–154 (2016)CrossRef
107.
Zurück zum Zitat J.L. Figueiredo, M.F.R. Pereira, The role of surface chemistry in catalysis with carbons. Catal. Today 150, 2–7 (2010)CrossRef J.L. Figueiredo, M.F.R. Pereira, The role of surface chemistry in catalysis with carbons. Catal. Today 150, 2–7 (2010)CrossRef
108.
Zurück zum Zitat A. Rey, M. Faraldos, A. Bahamonde, J.A. Casas, J.A. Zazo, J.J. Rodrıguez, Role of the activated carbon surface on catalytic wet peroxide oxidation. Ind. Eng. Chem. Res. 47, 8166–8174 (2008)CrossRef A. Rey, M. Faraldos, A. Bahamonde, J.A. Casas, J.A. Zazo, J.J. Rodrıguez, Role of the activated carbon surface on catalytic wet peroxide oxidation. Ind. Eng. Chem. Res. 47, 8166–8174 (2008)CrossRef
109.
Zurück zum Zitat G. Wen, S. Wu, B. Li, C. Dai, D.S. Su, Active sites and mechanisms for direct oxidation of benzene to phenol over carbon catalysts. Angew. Chem. Int. Ed. 54, 4105–4109 (2015)CrossRef G. Wen, S. Wu, B. Li, C. Dai, D.S. Su, Active sites and mechanisms for direct oxidation of benzene to phenol over carbon catalysts. Angew. Chem. Int. Ed. 54, 4105–4109 (2015)CrossRef
110.
Zurück zum Zitat Q. Wei, H. Fan, F. Qin, Q. Ma, W. Shen, Metal-free honeycomb-like porous carbon as catalyst for direct oxidation of benzene to phenol. Carbon 133, 6–13 (2018)CrossRef Q. Wei, H. Fan, F. Qin, Q. Ma, W. Shen, Metal-free honeycomb-like porous carbon as catalyst for direct oxidation of benzene to phenol. Carbon 133, 6–13 (2018)CrossRef
111.
Zurück zum Zitat L.F. Wang, J. Zhang, D.S. Su, Y.Y. Ji, X.J. Cao, F.S. Xiao, Simple preparation of honeycomb-like macrostructured and microporous carbons with high performance in oxidative dehydrogenation of ethylbenzene. Chem. Mater. 19, 2894–2897 (2007)CrossRef L.F. Wang, J. Zhang, D.S. Su, Y.Y. Ji, X.J. Cao, F.S. Xiao, Simple preparation of honeycomb-like macrostructured and microporous carbons with high performance in oxidative dehydrogenation of ethylbenzene. Chem. Mater. 19, 2894–2897 (2007)CrossRef
112.
Zurück zum Zitat L. Pereira, R. Pereira, M.F.R. Pereira, M.M. Alves, Effect of different carbon materials as electron shuttles in the anaerobic biotransformation of nitroanilines. Biotechnol. Bioeng. 113, 1194–1202 (2016)PubMedCrossRef L. Pereira, R. Pereira, M.F.R. Pereira, M.M. Alves, Effect of different carbon materials as electron shuttles in the anaerobic biotransformation of nitroanilines. Biotechnol. Bioeng. 113, 1194–1202 (2016)PubMedCrossRef
113.
Zurück zum Zitat D.S. Su, S. Perathoner, G. Centi, Nanocarbons for the development of advanced catalysts. Chem. Rev. 113, 5782–5816 (2013)PubMedCrossRef D.S. Su, S. Perathoner, G. Centi, Nanocarbons for the development of advanced catalysts. Chem. Rev. 113, 5782–5816 (2013)PubMedCrossRef
114.
Zurück zum Zitat R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989)CrossRef R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989)CrossRef
115.
Zurück zum Zitat R.P. Rocha, M.F.R. Pereira, J.L. Figueiredo, Carbon as a catalyst: Esterification of acetic acid with ethanol. Catal. Today 218–219, 51–56 (2013)CrossRef R.P. Rocha, M.F.R. Pereira, J.L. Figueiredo, Carbon as a catalyst: Esterification of acetic acid with ethanol. Catal. Today 218–219, 51–56 (2013)CrossRef
116.
Zurück zum Zitat J.P.S. Sousa, M.F.R. Pereira, J.L. Figueiredo, NO oxidation over nitrogen doped carbon xerogels. Appl. Catal. B 125, 398–408 (2012)CrossRef J.P.S. Sousa, M.F.R. Pereira, J.L. Figueiredo, NO oxidation over nitrogen doped carbon xerogels. Appl. Catal. B 125, 398–408 (2012)CrossRef
117.
Zurück zum Zitat R.P. Rocha, J. Restivo, J.P.S. Sousa, J.J.M. Órfão, M.F.R. Pereira, J.L. Figueiredo, Nitrogen-doped carbon xerogels as catalysts for advanced oxidation processes. Catal. Today 241, 73–79 (2015)CrossRef R.P. Rocha, J. Restivo, J.P.S. Sousa, J.J.M. Órfão, M.F.R. Pereira, J.L. Figueiredo, Nitrogen-doped carbon xerogels as catalysts for advanced oxidation processes. Catal. Today 241, 73–79 (2015)CrossRef
118.
Zurück zum Zitat B. Xing, J.J. Pignatello, Sorption of Organic Chemicals, in Encyclopedia of Soils in the Environment, ed. by D. Hillel, (Elsevier, Oxford, 2005), pp. 537–548CrossRef B. Xing, J.J. Pignatello, Sorption of Organic Chemicals, in Encyclopedia of Soils in the Environment, ed. by D. Hillel, (Elsevier, Oxford, 2005), pp. 537–548CrossRef
119.
Zurück zum Zitat T.W. Kirchstetter, T. Novakov, Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmos. Environ. 41, 1874–1888 (2007)CrossRef T.W. Kirchstetter, T. Novakov, Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmos. Environ. 41, 1874–1888 (2007)CrossRef
120.
Zurück zum Zitat X.D. Yu, W.W. Gong, X.H. Liu, H.Y. Bao, The reductive mechanism of nitrobenzene catalyzed by nine charcoals in sulfides solution. Sci. China Chem. 55, 1–7 (2012) X.D. Yu, W.W. Gong, X.H. Liu, H.Y. Bao, The reductive mechanism of nitrobenzene catalyzed by nine charcoals in sulfides solution. Sci. China Chem. 55, 1–7 (2012)
121.
Zurück zum Zitat H. Amezquita-Garcia, E. Razo-Flores, F. Cervantes, J. Rangel-Mendez, Activated carbon fibers as redox mediators for the increased reduction of nitroaromatics. Carbon 55, 276–284 (2013)CrossRef H. Amezquita-Garcia, E. Razo-Flores, F. Cervantes, J. Rangel-Mendez, Activated carbon fibers as redox mediators for the increased reduction of nitroaromatics. Carbon 55, 276–284 (2013)CrossRef
122.
Zurück zum Zitat R.P. Schwarzenbach, P.M. Gschwend, D.M. Imboden, Environmental Organic Chemistry (Wiley, Hoboken, 2005) R.P. Schwarzenbach, P.M. Gschwend, D.M. Imboden, Environmental Organic Chemistry (Wiley, Hoboken, 2005)
123.
Zurück zum Zitat W. Gong, X. Liu, S. Xia, B. Liang, W. Zhang, Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments. J. Hazard. Mater. 310, 125–134 (2016)PubMedCrossRef W. Gong, X. Liu, S. Xia, B. Liang, W. Zhang, Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments. J. Hazard. Mater. 310, 125–134 (2016)PubMedCrossRef
124.
Zurück zum Zitat S.Y. Oh, P.C. Chiu, Graphite-and soot-mediated reduction of 2,4-dinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine. Environ. Sci. Technol. 43, 6983–6988 (2009)PubMedCrossRef S.Y. Oh, P.C. Chiu, Graphite-and soot-mediated reduction of 2,4-dinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine. Environ. Sci. Technol. 43, 6983–6988 (2009)PubMedCrossRef
125.
Zurück zum Zitat X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017)CrossRef X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017)CrossRef
126.
Zurück zum Zitat A.J. Clancy, M.K. Bayazit, S.A. Hodge, N.T. Skipper, C.A. Howard, M.S.P. Shaffer, Charged carbon nanomaterials: Redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363–7408 (2018)PubMedCrossRef A.J. Clancy, M.K. Bayazit, S.A. Hodge, N.T. Skipper, C.A. Howard, M.S.P. Shaffer, Charged carbon nanomaterials: Redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363–7408 (2018)PubMedCrossRef
127.
Zurück zum Zitat A. Narita, X.-Y. Wang, X. Feng, K. Mullen, New advances in nanographene chemistry. Chem. Soc. Rev. 44, 6616–6643 (2015)PubMedCrossRef A. Narita, X.-Y. Wang, X. Feng, K. Mullen, New advances in nanographene chemistry. Chem. Soc. Rev. 44, 6616–6643 (2015)PubMedCrossRef
128.
Zurück zum Zitat V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116, 5464–5519 (2016)PubMedCrossRef V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116, 5464–5519 (2016)PubMedCrossRef
129.
Zurück zum Zitat Y. Suda, T. Ono, M. Akazawa, Y. Sakai, J. Tsujino, N. Homma, Preparation of carbon nanoparticles by plasma-assisted pulsed laser deposition method—Size and binding energy dependence on ambient gas pressure and plasma condition. Thin Solid Films 415, 15–20 (2002)CrossRef Y. Suda, T. Ono, M. Akazawa, Y. Sakai, J. Tsujino, N. Homma, Preparation of carbon nanoparticles by plasma-assisted pulsed laser deposition method—Size and binding energy dependence on ambient gas pressure and plasma condition. Thin Solid Films 415, 15–20 (2002)CrossRef
130.
Zurück zum Zitat Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H.F. Wang, P.J.G. Luo, H. Yang, M.E. Kose, B.L. Chen, L.M. Veca, S.-Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006)PubMedCrossRef Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H.F. Wang, P.J.G. Luo, H. Yang, M.E. Kose, B.L. Chen, L.M. Veca, S.-Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006)PubMedCrossRef
131.
Zurück zum Zitat D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734–738 (2010)PubMedCrossRef D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734–738 (2010)PubMedCrossRef
132.
Zurück zum Zitat N. Dhenadhayalan, K.-C. Lin, R. Suresh, P. Ramamurthy, Unravelling the multiple emissive states in citric-acid-derived carbon dots. J. Phys. Chem. C 120, 1252–1261 (2016)CrossRef N. Dhenadhayalan, K.-C. Lin, R. Suresh, P. Ramamurthy, Unravelling the multiple emissive states in citric-acid-derived carbon dots. J. Phys. Chem. C 120, 1252–1261 (2016)CrossRef
133.
Zurück zum Zitat L. Wang, S.-J. Zhu, H.-Y. Wang, S.-N. Qu, Y.-L. Zhang, J.-H. Zhang, Q.-D. Chen, H.-L. Xu, W. Han, B. Yang, H.-B. Sun, Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 8, 2541–2547 (2014)PubMedCrossRef L. Wang, S.-J. Zhu, H.-Y. Wang, S.-N. Qu, Y.-L. Zhang, J.-H. Zhang, Q.-D. Chen, H.-L. Xu, W. Han, B. Yang, H.-B. Sun, Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 8, 2541–2547 (2014)PubMedCrossRef
134.
Zurück zum Zitat H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10, 484–491 (2016)PubMedCrossRef H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10, 484–491 (2016)PubMedCrossRef
135.
Zurück zum Zitat X.M. Wen, P. Yu, Y.R. Toh, X.T. Hao, J. Tang, Intrinsic and extrinsic fluorescence in carbon nanodots: Ultrafast time-resolved fluorescence and carrier dynamics. Adv. Opt. Mater. 1, 173–178 (2013)CrossRef X.M. Wen, P. Yu, Y.R. Toh, X.T. Hao, J. Tang, Intrinsic and extrinsic fluorescence in carbon nanodots: Ultrafast time-resolved fluorescence and carrier dynamics. Adv. Opt. Mater. 1, 173–178 (2013)CrossRef
136.
Zurück zum Zitat S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots and polymer dots): Current state and future perspective. Nano Res. 8, 355–381 (2015)CrossRef S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots and polymer dots): Current state and future perspective. Nano Res. 8, 355–381 (2015)CrossRef
137.
Zurück zum Zitat G. Yang, C. Wu, X. Luo, X. Liu, Y. Gao, P. Wu, C. Cai, S.S. Saavedra, Exploring the emissive states of heteroatom-doped graphene quantum dots. J. Phys. Chem. C 122, 6483–6492 (2018)CrossRef G. Yang, C. Wu, X. Luo, X. Liu, Y. Gao, P. Wu, C. Cai, S.S. Saavedra, Exploring the emissive states of heteroatom-doped graphene quantum dots. J. Phys. Chem. C 122, 6483–6492 (2018)CrossRef
138.
Zurück zum Zitat M.E. Casida, T.A. Wesolowski, Generalization of the Kohn–Sham equations with constrained electron density formalism and its time-dependent response theory formulation. Int. J. Quantum Chem. 96, 577 (2004)CrossRef M.E. Casida, T.A. Wesolowski, Generalization of the Kohn–Sham equations with constrained electron density formalism and its time-dependent response theory formulation. Int. J. Quantum Chem. 96, 577 (2004)CrossRef
139.
Zurück zum Zitat T.A. Wesolowski, Hydrogen-bonding-induced shifts of the excitation energies in nucleic acid bases: An interplay between electrostatic and electron density overlap effects. J. Am. Chem. Soc. 126, 11444 (2004)PubMedCrossRef T.A. Wesolowski, Hydrogen-bonding-induced shifts of the excitation energies in nucleic acid bases: An interplay between electrostatic and electron density overlap effects. J. Am. Chem. Soc. 126, 11444 (2004)PubMedCrossRef
140.
Zurück zum Zitat J. Neugebauer, On the calculation of general response properties in subsystem density functional theory. J. Chem. Phys. 131, 084104 (2009)PubMedCrossRef J. Neugebauer, On the calculation of general response properties in subsystem density functional theory. J. Chem. Phys. 131, 084104 (2009)PubMedCrossRef
141.
Zurück zum Zitat M.A. Sk, A. Ananthanarayanan, L. Huang, K.H. Lim, P. Chen, Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2, 6954–6960 (2014)CrossRef M.A. Sk, A. Ananthanarayanan, L. Huang, K.H. Lim, P. Chen, Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2, 6954–6960 (2014)CrossRef
142.
Zurück zum Zitat S. Kim, S.W. Hwang, M.-K. Kim, D.Y. Shin, D.H. Shin, C.O. Kim, S.B. Yang, J.H. Park, E. Hwang, S.-H. Choi, G. Ko, S. Sim, C. Sone, H.J. Choi, S. Bae, B.H. Hong, Anomalous behaviors of visible luminescence from graphene quantum dots: Interplay between size and shape. ACS Nano 6, 8203–8208 (2012)PubMedCrossRef S. Kim, S.W. Hwang, M.-K. Kim, D.Y. Shin, D.H. Shin, C.O. Kim, S.B. Yang, J.H. Park, E. Hwang, S.-H. Choi, G. Ko, S. Sim, C. Sone, H.J. Choi, S. Bae, B.H. Hong, Anomalous behaviors of visible luminescence from graphene quantum dots: Interplay between size and shape. ACS Nano 6, 8203–8208 (2012)PubMedCrossRef
143.
Zurück zum Zitat S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7, 1239–1245 (2013)PubMedCrossRef S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7, 1239–1245 (2013)PubMedCrossRef
144.
Zurück zum Zitat B. Zhu, S. Sun, Y. Wang, S. Deng, G. Qian, M. Wang, A. Hu, Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. J. Mater. Chem. C 1, 580–586 (2013)CrossRef B. Zhu, S. Sun, Y. Wang, S. Deng, G. Qian, M. Wang, A. Hu, Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. J. Mater. Chem. C 1, 580–586 (2013)CrossRef
145.
Zurück zum Zitat K. Hola, A.B. Bourlinos, O. Kozak, K. Berka, K.M. Siskova, M. Havrdova, J. Tucek, K. Safarova, M. Otyepka, E.P. Giannelis, R. Zboril, Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission. Carbon 70, 279–286 (2014)CrossRef K. Hola, A.B. Bourlinos, O. Kozak, K. Berka, K.M. Siskova, M. Havrdova, J. Tucek, K. Safarova, M. Otyepka, E.P. Giannelis, R. Zboril, Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO induced red-shift emission. Carbon 70, 279–286 (2014)CrossRef
146.
Zurück zum Zitat W. Kwon, S. Do, J.-H. Kim, M.S. Jeong, S.-W. Rhee, Control of photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines. Sci. Rep. 5, 12604 (2015)PubMedPubMedCentralCrossRef W. Kwon, S. Do, J.-H. Kim, M.S. Jeong, S.-W. Rhee, Control of photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines. Sci. Rep. 5, 12604 (2015)PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat K. Hola, M. Sudolska, S. Kalytchuk, D. Nachtigallova, A.L. Rogach, M. Otyepka, R. Zboril, Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 11, 12402–12410 (2017)PubMedCrossRef K. Hola, M. Sudolska, S. Kalytchuk, D. Nachtigallova, A.L. Rogach, M. Otyepka, R. Zboril, Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 11, 12402–12410 (2017)PubMedCrossRef
148.
Zurück zum Zitat Q. Xu, Y. Liu, R. Su, L. Cai, B. Li, Y. Zhang, L. Zhang, Y. Wang, Y. Wang, N. Li, X. Gong, Z. Gu, Y. Chen, Y. Tan, C. Dong, T.S. Sreeprasad, Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: An integrative experimental–theoretical consideration. Nanoscale 8, 17919–17927 (2016)PubMedCrossRef Q. Xu, Y. Liu, R. Su, L. Cai, B. Li, Y. Zhang, L. Zhang, Y. Wang, Y. Wang, N. Li, X. Gong, Z. Gu, Y. Chen, Y. Tan, C. Dong, T.S. Sreeprasad, Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: An integrative experimental–theoretical consideration. Nanoscale 8, 17919–17927 (2016)PubMedCrossRef
149.
Zurück zum Zitat Y. Dong, J. Cai, X. You, Y. Chi, Sensing applications of luminescent carbon based dots. Analyst 140, 7468–7486 (2015)PubMedCrossRef Y. Dong, J. Cai, X. You, Y. Chi, Sensing applications of luminescent carbon based dots. Analyst 140, 7468–7486 (2015)PubMedCrossRef
150.
Zurück zum Zitat H. Sun, L. Wu, W. Wei, X. Qu, Recent advances in graphene quantum dots for sensing. Mater. Today 16, 433–442 (2016)CrossRef H. Sun, L. Wu, W. Wei, X. Qu, Recent advances in graphene quantum dots for sensing. Mater. Today 16, 433–442 (2016)CrossRef
151.
Zurück zum Zitat H. Zhang, H. Zhang, A. Aldalbahi, X. Zuo, C. Fan, X. Mi, Fluorescent biosensors enabled by graphene and graphene oxide. Biosens. Bioelectron. 89, 96–106 (2017)PubMedCrossRef H. Zhang, H. Zhang, A. Aldalbahi, X. Zuo, C. Fan, X. Mi, Fluorescent biosensors enabled by graphene and graphene oxide. Biosens. Bioelectron. 89, 96–106 (2017)PubMedCrossRef
152.
Zurück zum Zitat A.P. Demchenko, M.O. Dekaliuk, Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl. Fluoresc. 1, 042001 (2013)PubMedCrossRef A.P. Demchenko, M.O. Dekaliuk, Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl. Fluoresc. 1, 042001 (2013)PubMedCrossRef
153.
Zurück zum Zitat S. Li, Y. Li, J. Cao, J. Zhu, L. Fan, X. Li, Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal. Chem. 86, 10201–10207 (2014)PubMedCrossRef S. Li, Y. Li, J. Cao, J. Zhu, L. Fan, X. Li, Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal. Chem. 86, 10201–10207 (2014)PubMedCrossRef
154.
Zurück zum Zitat X. Sun, Y. Wang, Y. Lei, Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev. 44, 8019–8061 (2015)PubMedCrossRef X. Sun, Y. Wang, Y. Lei, Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev. 44, 8019–8061 (2015)PubMedCrossRef
155.
Zurück zum Zitat B. Ju, Y. Wang, Y.-M. Zhang, T. Zhang, Z. Liu, M. Li, S.X.-A. Zhang, Photostable and low-toxic yellow-green carbon dots for highly selective detection of explosive 2,4,6-trinitrophenol based on the dual electron transfer mechanism. ACS Appl. Mater. Interfaces 10, 13040–13047 (2018)PubMedCrossRef B. Ju, Y. Wang, Y.-M. Zhang, T. Zhang, Z. Liu, M. Li, S.X.-A. Zhang, Photostable and low-toxic yellow-green carbon dots for highly selective detection of explosive 2,4,6-trinitrophenol based on the dual electron transfer mechanism. ACS Appl. Mater. Interfaces 10, 13040–13047 (2018)PubMedCrossRef
Metadaten
Titel
Computational and Experimental Analysis of Carbon Functional Nanomaterials
verfasst von
Pitchaimani Veerakumar
Namasivayam Dhenadhayalan
King-Chuen Lin
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-0006-0_7